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Weighted Spectral Distribution for Internet Topology
Analysis: Theory and Applications

Damien Fay, Hamed Haddadi, Andrew Thomason, Andrew W. Moore, Member, IEEE, Richard Mortier,
Almerima Jamakovic, Steve Uhlig, and Miguel Rio

Abstract—Comparing graphs to determine the level of under-
lying structural similarity between them is a widely encountered
problem in computer science. It is particularly relevant to the
study of Internet topologies, such as the generation of synthetic
topologies to represent the Internet’s AS topology. We derive a
new metric that enables exactly such a structural comparison: the
weighted spectral distribution. We then apply this metric to three
aspects of the study of the Internet’s AS topology. i) We use it to
quantify the effect of changing the mixing properties of a simple
synthetic network generator. ii) We use this quantitative under-
standing to examine the evolution of the Internet’s AS topology
over approximately seven years, finding that the distinction be-
tween the Internet core and periphery has blurred over time. iii)
We use the metric to derive optimal parameterizations of several
widely used AS topology generators with respect to a large-scale
measurement of the real AS topology.

Index Terms—Graph metrics, Internet topology, spectral graph
theory, topology generation.

I. INTRODUCTION

G RAPH comparison is a problem that occurs in many
branches of computing, from vision to speech processing

to systems. Many techniques exist for graph comparison, e.g.,
the edit distance [1] (the number of link and node additions
required to turn one graph into another) or counting the number
of common substructures in two graphs [2]. However, for large
graphs such as the AS topologies examined here, these methods
are computationally too expensive. In addition, they are inap-
propriate for dynamic graphs, resulting in varying edit distances
or substructure counts. Instead, we require a metric that reflects
the structure of large graphs in some meaningful sense. Typical
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TABLE I
EIGENVALUES, WSD, AND DOMINANT NODES OF EXAMPLE NETWORK

currently used “metrics” include the clustering coefficient, the
assortativity coefficient, the node degree distribution, and the

-core decomposition. However, these are not metrics in the
mathematical sense but rather are measures, e.g., two graphs
may have the same clustering coefficient but hugely different
structures. This distinction is important as a measure cannot
be used to determine unique differences between graphs: two
graphs with the same measures may not in fact be the same.

In this paper, we present a new metric, the weighted spec-
tral distribution (WSD), which compares graphs based on the
distribution of a decomposition of their structure. Specifically,
the WSD is based on the spectrum of the normalized Lapla-
cian matrix and is thus strongly associated with the distribu-
tion of random walk cycles in a network (as will be shown in
Section III). The probability of randomly walking steps from
a node such that we return to that node indicates the connec-
tivity of that node. Hence, a low probability indicates high con-
nectivity (there are many routes, few of which return) while a
high probability indicates high clustering (many of the routes
lead back to the original node).

The WSD is computationally inexpensive and so can be
applied to very large graphs (more than 30 000 nodes and
200 000 edges). Also, it expresses the graph structure as a
simply plotted curve that can be related to specific properties
of AS graphs: hierarchy and local connectivity. Given that the
WSD is a metric in the mathematical sense, as we show in
Section III, several applications become possible: parameter es-
timation for topology generators with respect to a target dataset
(Section V-C), direct comparison among topology generators
using these optimal parameters (Table II), and quantification of
change in the underlying structure of the Internet as it evolves
over time (Section V-B). This metric is also a useful tool to
evaluate the graphs that describe synthetic workloads generated
from trace data. In such cases, the generated graphs should not
exactly match the original trace data but should share some
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TABLE II
OPTIMUM PARAMETER VALUES FOR MATCHING SKITTER TOPOLOGY SAMPLED IN MARCH 2004

common structure with them. Such situations are encountered
in workload generation and Internet topology generation.

In this paper, we focus on applications of the WSD to the
study of the Internet’s AS topology. An AS represents a single
network that can apply its own operational and peering policy.
An Internet service provider (ISP) may use one or more ASs.
The Internet contains more than 28 000 ASs, each in a set of rela-
tionships with its neighbors, who are its customers, providers, or
peers. In the Internet’s core, there is a full mesh formed between
the ASs of the various tier-1 ISPs. However, at the edges, there
is a huge number of smaller ISPs and customer networks that
connect through upstream providers and local public exchange
points. These smaller ISPs and customer networks may have
only one upstream provider, or may have many for resilience
and performance reasons. In addition, the Internet constantly
evolves; new networks are added, old ones disappear, and ex-
isting ones grow and merge.

Links between ASs depend on business relationships that can
and do change, sometimes rapidly, making any interpretation of
the Internet as a static structure inaccurate. This rich and dy-
namic structure makes it difficult for researchers to provide ei-
ther a single, representative topological model or a single graph
metric that captures all characteristics of any topology. How-
ever, such a metric would make it possible to generate realistic
synthetic topologies improving the accuracy of Internet-wide
protocol simulations, and perhaps enabling the prediction of the
future evolution of the Internet’s topology.

Many attempts to capture one or more characteristics have
been made, resulting in several topology generators that each
synthesize Internet-like topologies using different models and
parameters. Unfortunately, validating these models is an ad hoc
affair that typically means matching several of the measures
given above and hoping that this will also ensure a matching
structure. Users often select default parameters for these models
based on specific datasets measured at particular times that no
longer represent today’s Internet. However, as noted previously,
these measures cannot be used to estimate the optimum param-
eters for a model given a target topology.

This paper makes the following contributions:
i) a spectral metric and a strawman model for comparing the

structure of large graphs;
ii) the analysis of more than seven years of the evolution of

the Internet AS topology seen from two different mea-
surement techniques;

iii) a comparison among the outputs of five major Internet
topology generators and a measured dataset;

iv) optimal parameter estimation of said topology generators
with respect to the measured dataset using our metric.

We proceed in Section II by reviewing related work on graph
matching, spectral analysis of networks, and Internet analysis.

In Section III, we present the necessary theoretical background,
introducing the concepts on which we base our metric, before
deriving the metric itself. In Section V, we demonstrate use of
the weighted spectral distribution in three distinct applications:
comparing the structure of large graphs, quantifying the evolu-
tion of the AS topology over seven years, and comparing and es-
timating optimal parameters for five widely used topology gen-
erators. We conclude in Section VI.

II. RELATED WORK

In this section, we outline related work, classifying it into
three groups: spectral graph analysis and the closely related
WSD, evolution of the AS topology, and analysis of the clus-
tering features of the AS topology.

The graph spectrum has been used for a variety of purposes
in addition to characterization of Internet topologies, including
space comparison [3], graph matching [4], cluster identification
[5], and topology generator tuning [6]. Gkantsidis et al. [7] per-
form a comparison of clustering coefficients using the eigen-
vectors of the largest eigenvalues of the adjacency matrices of
AS topologies. is chosen to retain the strongest eigenvectors,
discarding most of the others. Those retained are then shown to
represent finer elements of the Internet structure. The rest of the
spectrum is considered unimportant, even though other works
have shown that the eigenvalues of the adjacency matrix or the
normalized Laplacian matrix can be used to accurately represent
a topology [8], and some specific eigenvalues provide a measure
of properties such as robustness of a network to failures [9].

Vukadinovic et al. [10] were the first to investigate the proper-
ties of the AS topology based on the normalized Laplacian spec-
trum. They observe that the normalized Laplacian spectrum can
be used to distinguish between synthetic topologies generated
by Inet [11] and AS topologies extracted from BGP data. These
results indicate that the normalized Laplacian spectrum reveals
important structural properties of the AS topology. However,
as noted by Haddadi et al. [6], the spectrum alone cannot be
used directly to compare graphs as it contains too detailed in-
formation about the network structure. We expand on this work
by demonstrating how appropriate weighting of the eigenvalues
can reveal the structural differences between two topologies.
Perhaps the closest metric to the WSD is the fast graph kernel
method proposed by Vishwanathan et al. [12]. Graph kernels are
similar to the WSD in that they count random walks in networks
but differ in the means by which they do so.

Shyu et al. [13] study the evolution of a set of topological
metrics computed on a set of observed AS topologies. The au-
thors rely on monthly snapshots extracted from BGP Route-
Views from 1999 to 2006. The topological metrics they study
are the average degree, average path length, node degree, expan-
sion, resilience, distortion, link value, and normalized Laplacian
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spectrum. They find that the metrics are not stable over time, ex-
cept for the normalized Laplacian spectrum.

Latapy and Magnien [14] address the question of studying
the relation between the size of a measurement sample and the
corresponding topological properties. Based on AS topologies
built from IP-level measurements from Skitter for a period from
January 2005 to May 2006, they observe an increase in the av-
erage degree and the clustering coefficient when a larger dataset
is used.

Wang and Loguinov [15] propose the wealth-based Internet
topology (WIT) model. Interestingly, central to their model is
the notion that each AS picks its connections to maximize local
random walks. This characteristic of the structure of the AS
topology is particularly targeted by the WSD. However, as this
model is not publicly available, it is not included in our compar-
isons (Section V).

Wool and Sagie [16] propose several clustering algorithms
to explore the AS topology using just a snapshot of the Skitter
data. They focus on identification of the dominant clusters, al-
though their result is sensitive to parameters such as the min-
imum cluster size. Our technique, the WSD, differs in that it
focuses on random cycles instead of clusters and does not re-
quire any parameter estimation. In addition, we use the -core
decomposition to analyze the core of the Internet AS topology.

Li et al. [17] perform a similar study to the one presented here.
In their work, they use several different clustering methods to
identify the distribution of clustering features throughout a net-
work. Interestingly, their clustering metric gives similar results
for the Skitter and UCLA datasets, while WSD shows differing
results reflecting directly the differing sampling characteristics
of these two measurement techniques. The WSD also allows
us to obtain a “best fit” prior to comparing topology generators
with the observed datasets.

III. THEORETICAL BACKGROUND

We now derive our metric, the weighted spectral distribution,
relating it to another common structural metric, the clustering
coefficient, before showing how it characterizes networks with
different mixing properties.

Denote an undirected graph as , where is the
set of vertices (nodes) and is the set of edges (links). The
adjacency matrix of , , has an entry of one if two nodes

and are connected and zero otherwise

if , are connected
if , are not connected.

(1)

Let be the degree of node and diag be the
diagonal matrix having the degrees along its diagonal. Denoting
by the identity matrix , the
normalized Laplacian associated with graph is constructed
from by normalizing the entries of by the node degrees of

as

(2)

or, equivalently

if and
if and are adjacent
otherwise.

(3)

As is a real symmetric matrix, there is an orthonormal basis
of real eigenvectors (i.e., , , and

) with associated eigenvalues . It is con-
venient to label these so that . The set of pairs
(eigenvectors and eigenvalues of ) is called the spectrum of the
graph. It can be seen that

(4)

The eigenvalues represent the strength of
projection of the matrix onto the basis elements. This may be
viewed from a statistical point of view [18], where each
may be used to approximate with approximation error
inversely proportional to 1 . However, for a graph, those
nodes that are best approximated by in fact form a
cluster of nodes. This is the basis for spectral clustering, a tech-
nique which uses the eigenvectors of to perform clustering of
a dataset or graph [19]. The first (smallest) nonzero eigenvalue
and associated eigenvector are associated with the main clusters
of data. Subsequent eigenvalues and eigenvectors can be asso-
ciated with cluster splitting and also identification of smaller
clusters [5]. Typically, there exists what is called a spectral gap
in which, for some and , .
That is, eigenvalues 1 are approximately equal
to one and are likely to represent links in a graph that do not
belong to any particular cluster. It is then usual to reduce the
dimensionality of the data using an approximation based on
the spectral decomposition. However, in this paper, we are
interested in representing the global structure of a graph (e.g.,
we are interested in the presence or absence of many small
clusters), which is essentially the spread of clustering across
the graph. This information is contained in all the eigenvalues
of the spectral decomposition.

Let be a vector. From (3), we see that

(5)

Now, the eigenvalues cannot be large because from (5) we
obtain

(6)

and so . What is more, the mean of the eigen-
values is one because

(7)

by (3), where is the trace of .
To summarize: the eigenvalues of lie in the range zero to

two (the smallest being zero), i.e., ,
and their mean is one.

The distribution of the numbers contains
useful information about the network, as will be seen. In

1That is, the eigenvalues at the center of the spectrum.
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turn, information about this distribution is given by its mo-
ments in the statistical sense, where the th moment is
1 . These moments have a direct physical
interpretation in terms of the network, as follows. Writing
for the matrix so that , then by (3),
the entries of are given by

(8)

Now the numbers 1 are the eigenvalues of ,
and so is just . Writing for the th
entry of , the th entry of is the sum of all products

, where and . But , as
given by (8), is zero unless nodes and are adjacent. So we
define an -cycle in to be a sequence of vertices
with adjacent to for and with
adjacent to . (Thus, for example, a triangle in with vertices
set gives rise to six 3-cycles , , , , ,
and . Note that, in general, an -cycle might have repeated
vertices.) We now have

(9)

the sum being over all -cycles in . There-
fore, counts the number of -cycles, normalized
by the degree of each node in the cycle.

The number of -cycles is related to various graph proper-
ties. The number of 2-cycles is just (twice) the number of edges,
and the number of 3-cycles is (six times) the number of trian-
gles. Hence is related to the clustering coefficient,
as discussed below. An important graph property is the number
of 4-cycles. A graph that has the minimum number of 4-cy-
cles, for a graph of its density, is quasi-random, i.e., it shares
many of the properties of random graphs, including, typically,
high connectivity, low diameter, having edges distributed uni-
formly through the graph, and so on. This statement is made
precise in [20] and [21]. For regular graphs, (9) shows that the
sum is directly related to the number of 4-cycles.
In general, the sum counts the 4-cycles with weights: for the
relationship between the sum and the quasi-randomness of the
graph in the nonregular case, see the more detailed discussion
in [22, Ch. 5]. The right-hand side of (9) can also be seen in
terms of random walks. A random walk starting at a vertex with
degree will choose an edge with probability 1 and at the
next vertex, say, , choose an edge with probability 1 , and
so on. Thus the probability of starting and ending randomly at a
vertex after steps is the sum of the probabilities of all -cy-
cles that start and end at that vertex. In other words, exactly the
right-hand side of (9). As pointed out in [15], random walks are
an integral part of the Internet AS structure.

The left-hand side of (9) provides an interesting insight into
graph structure. The right-hand side is the sum of normalized

-cycles, whereas the left-hand side involves the spectral de-
composition. We note in particular that the spectral gap is di-
minished because eigenvalues close to one are given a very low
weighting compared to eigenvalues far from one. This is impor-
tant, as the eigenvalues in the spectral gap typically represent

links in the network that do not belong to any specific cluster
and are not therefore important parts of the larger structure of
the network.

Next, we consider the well-known clustering coefficient. It
should be noted that there is little connection between the clus-
tering coefficient and cluster identification, referred to above.
The clustering coefficient is defined as the average number
of triangles divided by the total number of possible triangles

(10)

where is the number of triangles for node and is the de-
gree of node . Now consider a specific triangle between nodes

, , and . For the clustering coefficient, noting that the triangle
will be considered three times, once from each node, the contri-
bution to the average is

(11)

However, for the weighted spectrum (with ), this partic-
ular triangle gives rise to six 3-cycles and contributes

(12)

So, it can be seen that the clustering coefficient normalizes each
triangle according to the total number of possible triangles,
while the weighted spectrum (with ) instead normalizes
using a product of the degrees. Thus, the two metrics can
be considered to be similar but not equal. Indeed, it should
be noted that the clustering coefficient is in fact not a metric
in the strict sense. While two networks can have the same
clustering coefficient, they may differ significantly in structure.
In contrast, the elements of will only agree if two
networks are isomorphic.

We now formally define the weighted spectrum as the nor-
malized sum of -cycles as

(13)

However, calculating the eigenvalues of a large (even sparse)
matrix is computationally expensive. In addition, the aim here
is to represent the global structure of a graph, and so precise es-
timates of all the eigenvalue values are not required. Thus, the
distribution2 of eigenvalues is sufficient. In this paper, the dis-
tribution of eigenvalues is estimated using pivoting
and Sylvester’s Law of Inertia to compute the number of eigen-
values that fall in a given interval. To estimate the distribution,
we use equally spaced bins.3 A measure of the graph can then
be constructed by considering the distribution of the eigenvalues
as

(14)

2The eigenvalues of a given graph are deterministic, and so distribution here
is not meant in a statistical sense.

3� can be increased depending on the granularity required.
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where the elements of form the weighted spectral dis-
tribution

WSD (15)

In addition, a metric can then be constructed from for
comparing two graphs and as

(16)
where and are the eigenvalue distributions of and
and the distribution of eigenvalues is estimated in the set of
bins . Equation (16) satisfies all the properties of a metric
(see Appendix A).

We next wish to test if the WSDs for graphs generated by
the same underlying process vary significantly (to show that the
WSD is stable). To do this, we generate a set of graphs that
have very similar structure and test to see if their WSDs are
also similar. The results of an empirical test are shown in Fig. 1.
This plot was created by generating 50 topologies using the AB
[23] generator with the (fixed) optimum parameters determined
in Section V-C, but with different initial conditions4. For each
run the spectral and weighted spectral distributions are recorded
yielding 50 50 bin values which are then used to estimate stan-
dard deviations. As the underlying model (i.e., the AB gener-
ator) is the same for each run, the structure might be expected
to remain the same and so a “structural metric” should be insen-
sitive to random initial conditions. As can be seen, the standard
deviation5 of the (unweighted) spectrum is significantly
higher at the center of the spectrum. However, for the WSD, the
standard deviation peaks at the same point as the WSD;
the noise in the spectral gap has been suppressed. The evidence
seems to show that the WSD is therefore stable.

IV. EXAMPLES

After the fairly theoretical previous section, we aim at giving
the reader a better intuition behind the WSD with a simple ex-
ample. Fig. 2 shows a small network, called , with seven
nodes and eight links. As can be seen, there are two cycles of
length three in this network and one of length four. We will take

in this example for convenience and without loss of gen-
erality. The random walk probabilities are labeled in Fig. 2. For
example, node 3 has a degree of five, resulting in a probability
of 1/5 for each edge. The total probability of taking a random
walk around each 3-cycle is , also
shown.6

Fig. 3 shows a three-dimensional plot of the absolute value
(for clarity) of the eigenvectors of the normalized Laplacian.
The corresponding eigenvalues are shown in Table I.

As is well known, the eigenvectors of the normalized Lapla-
cian perform a partitioning of the nodes in a graph. In this ex-
ample, nodes 4 and 5 are grouped into eigenvector 3; nodes 1,
2, and 6 into eigenvectors 4 and 5; node 7 into eigenvector

4We found similar results for other parameters and topology generators.
5Multiplied by a factor of ten for clarity.
6The six comes from the fact that the random walk can start in one of three

nodes and go in one of two directions. It can be viewed in our case as really just
a nuisance scaling factor.

Fig. 1. Mean and standard deviations for WSD and (unweighted) spectrum for
the AB model over 50 simulations.

Fig. 2. A simple example network � .

2; and node 3 into eigenvector 1 (Fig. 3). Note that for each
partition, the nodes in the partition are the same; i.e., we could
swap the labels between nodes 4 and 5 and the network would
not change (i.e., an isomorphism). Eigenvector and eigenvalue
7, and , are special and partition all the nodes in the
network, with the most central nodes having the highest coeffi-
cients (see Table I, column 1). In general, the number of eigen-
values that are zero is equal to the number of components, ar-
guably the most important structural property in a graph. This
graph contains one connected component and so has a single
zero eigenvalue . Note that the highest possible weighting
in the WSD is given at zero (i.e., ): the number of
components in the graph.

Note that the sum of the eigenvalues taken to the power of
is indeed the same as the sum of the probabilities of taking
random walk cycles in the graph. This is shown in Table I, last
row: , which can be easily verified by
adding the cycle probabilities from Fig. 3

. What is interesting is how this sum is constructed. In
Table I, the main contributions to the sum are from eigenvalues
1, 2, 3, and 6 (we ignore eigenvalue 7 as it merely reflects that
the graph is connected), which are dominated by the nodes that
form the cycles: 3, 4, 5, and 7.
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Fig. 3. Eigenvectors of the simple example network.

However, this does not mean that the information provided by
the WSD is confined to -cycles in the graph. For example, in
Fig. 5, we take the edge linking nodes 1 and 3 and rewire them so
that 1 and 6 are now connected. Note that while the right cycle
is still in place, its probabilities have now changed, as the degree
of node 3 is now four. The corresponding eigenvalues have also
changed, as seen in Fig. 4.7

In conclusion, the WSD can roughly be seen as an amalga-
mation of local views (i.e., walks of length ) taken from all
the nodes. As , (1 ) will suppress the
smaller eigenvalues more and more as increases.8 We con-
sider three and four to be suitable values of for the current
application: is related to the well-known and under-
stood clustering coefficient; and as a 4-cycle represents
two routes (i.e., minimal redundancy) between two nodes. For
other applications, other values of may be of interest. Also
note that in Section III, we propose using the distribution of the
eigenvalues for large networks; unfortunately, it is not instruc-
tive to talk about a distribution for a small number of eigenvalues
(seven in this example).

V. APPLICATIONS

In this section, we use the WSD to better understand the
mixing properties of networks, the Internet’s AS topology evo-
lution, and the behavior of topology generators with respect to
observed Internet AS topologies.

A. Mixing Properties of Networks

The synthetic topology generator introduced in this section is
a strawman (demonstration) tool that can be adjusted to show
the effect of different parts of a topology on the resulting WSD.
It generates a set of topologies using a simple model based on
the existence of a network core and a periphery.

7Note that if we had used the adjacency matrix instead of the normalized
Laplacian, the rewiring would have no effect on the sum of the eigenvalues.

8This is closely related to the settling times in Markov chains, which are often
expressed in terms of the largest nontrivial eigenvalue. It differs in that the walk
Laplacian and not the normalized Laplacian is used.

Fig. 4. WSD of the example network.

Fig. 5. The second example network � .

Fig. 6. Synthetic topology example �� � �����.

Fig. 6 shows a small topology of 500 nodes. All nodes
within the graph are first assigned locations using a uniform dis-
tribution. Nodes within a circle of diameter are then defined
as the core and nodes outside a circle of diameter 1 as
the periphery, where is a factor called the mixing factor.
Connections are then assigned between the core nodes using a
Waxman model

(17)
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Fig. 7. Synthetic topology spectra.

where denotes the probability that node is connected to
node , and are the Waxman coefficients for the
core, and is the distance between two nodes and . Subse-
quently, connections are also assigned in the periphery9 using
a Waxman model with different coefficients and .
After this process, isolated nodes are connected to their nearest
neighbor.10 Fig. 7 shows the WSD (using ) for a topology
generated with nodes, , ,

, , , and (i.e., 5%
mixing), resulting in a small (relatively) meshed core with a
less well-connected periphery. There are several things to note
from this figure. Ignoring the asymmetric part of the curve,
which is due to a small number of disconnected components,
the peak of the weighted spectrum of the periphery alone lies at

, while that for the core lies at 0.5. The spectrum for the
overall network has two peaks at these points. This is a direct
result of the fact that the spectrum of a graph is the union of
the spectra of its disconnected subgraphs [22]. In terms of the
WSD, the union of spectra is equivalent to a weighted average
of the WSD. That is, for a graph composed of two
disconnected subgraphs and

(18)

where denotes graph volume (number of vertices). Although
there is 5% mixing between the core and periphery,

results in a close estimate of the network WSD (see
Fig. 7, denoted ). As (i.e., the core
and periphery become less and less connected), this estimate
becomes more accurate and is exact at .

Fig. 8 shows the effect of increasing the mix between the
periphery and the core.11 As can be seen, the core becomes less

9Note that nodes lying between� and���1��� are members of the core
and the periphery and can be assigned connections by both processes.

10Note that there are likely to be some disconnected components in the re-
sulting graphs giving asymmetrical spectra, but this does not affect the main
results.

11Again, the large peaks before 0.2 represent isolated subgraphs and are ig-
nored.

Fig. 8. Effect of a change in� on the spectrum of the overall network.

distinct in the resulting spectrum and has practically disap-
peared with 40% mixing. By increasing the mix, we are
effectively adding edges connecting the core and periphery,
which results in a spreading of the eigenvalues and thus a
spreading of the WSD, giving less distinct peaks. This result is
a consequence of the following theorem from [24].

Theorem 5.1: Let be a weighted graph and a sub-
graph on the vertices of with nonisolated vertices. If

and are the
eigenvalues of and , respectively, then for

, we have

is bipartite
otherwise.

(19)

In the current context, is the subgraph containing the nodes
connecting the core and periphery with connecting edges (i.e.,
the mix). These edges cause the eigenvalues of to spread
by at most places. Thus the core peak becomes less distinct.
This reflects that the core is less distinct.

B. Evolution of the Internet

In this section, two data sets measuring the Internet’s AS
topology over several years are compared using the WSD and
standard measures. The first dataset we study consists of seven
years of traceroute measurements starting in January 2001 and
ending in December 2007, collected by the CAIDA Skitter
project [25]. Traceroutes are initiated from several locations
in the world toward a large range of destination IP addresses.
The IP addresses reported in the traceroutes are mapped to AS
numbers using RouteViews BGP data. We use a monthly union
of the set of all unambiguous links collected on a daily basis by
the Skitter project.12

The second dataset consists of 52 snapshots, one per month,
from January 2004 to April 2008. This dataset, referred to as the
UCLA dataset, is available at the Internet topology collection13

maintained by Oliveira et al. [26]. These topologies are built

12A link may be ambiguous for a variety of reasons, principally due to prob-
lems resolving an IP address to its AS number; we ignore such links.

13http://irl.cs.ucla.edu/topology/.
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Fig. 9. Measures of the UCLA and Skitter AS topologies over several years.

and updated daily using data sources such as BGP routing tables
and updates from RouteViews, RIPE,14 Abilene,15 and Looking-
Glass servers.

Fig. 9 shows the values of several graph measures for the
Skitter and UCLA datasets. As can be seen, there is an overlap
between 2004 and 2007.

The number of ASs seen by Skitter exhibits abrupt changes
during the first 40 months. At the end of those 40 months,
changes were made in the way probing was performed.16 The
large increases in the number of ASs, observed during the first
40 months, are due to new monitors’ being added to the system.
After each increase in the number of ASs, a smooth decrease
follows, corresponding to a subset of the IP addresses of the
Skitter list that no longer respond to probes, e.g., because a
firewall starts blocking the probes. The variations in the number
of ASes seen by Skitter are probably not caused by changes
in the AS topology itself but rather by artifacts of the probing,
e.g., firewalls that block probes or nonresponding hosts.

The number of AS edges and the average node degree both
follow the behavior of the number of ASs seen. We only ob-
serve a large increase in the number of links during the first
few months, during which new monitors are added, resulting
in new regions of the Internet’s being covered by Skitter mea-
surements. As the list of destinations used by Skitter does not
cover the global set of ASs well [27] and the same list is shared
by all monitors, a new monitor will typically discover new ASs
close to its location. However, most of the AS edges close to the
destination IP addresses probably have already been discovered
by existing monitors [28].

14http://www.ripe.net/db/irr.html.
15http://abilene.internet2.edu/.
16These changes were subject to caveats and bugs affecting measurements

and, thus, the resulting metrics, at month 40. For more information, we refer to
http://www.caida.org/data/active/skitter_aslinks_dataset.xml/.

The AS edges that Skitter no longer observes probably still
exist but can no longer be seen by Skitter due to its shrinking
probing scope. To be effective in observing topology dynamics,
traceroute data collection must update destination lists con-
stantly to give optimal AS coverage. This limitation of Skitter
is visible in the decreasing average node degree. We would
normally expect to see a net increase in the average node degree
as ASs tend to add rather than remove peerings, and the results
of the BGP data support this view. If the coverage of the Skitter
measurements was not worsening, we should see an increasing
node degree.

The lower three graphs of Fig. 9 present the evolution of
the clustering coefficient, the assortativity coefficient,17 and
the weighted spectrum with , (related to the
topology’s clustering).18 We observe that changes were made
to the way Skitter probes the Internet around month 40: the
metrics take an unusual value, very small for the clustering
and very high for assortativity. The values of the clustering
and the assortativity coefficients fluctuate randomly over the
seven years, as if the sampling of the AS topology by Skitter is
not stable. Neither the clustering nor the assortativity seems to
decrease or increase over the seven years. The value of
shows a long-term increasing trend, similar to the decreasing
trend in the average node degree. Although related to the
clustering, gives different weights to different parts of
the topology. The subset of the topology that corresponds to
duplicated topological structures (e.g., the periphery) receives a
smaller weight than the rest. The increasing is likely to

17Assortativity is a measure of the likelihood of connection of nodes of similar
degrees [29]. This is usually expressed by means of the assortativity coefficient
�: assortative networks have � � � (disassortative have � � �, respectively)
and tend to have nodes that are connected to nodes with similar (dissimilar,
respectively) degree.

18See [30] for a detailed explanation on the mathematical measures and dif-
ferent datasets.
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Fig. 10. �-core proportions, Skitter AS topology.

be caused by the shrinking network sampled by Skitter, which
contains more 3-cycles on average.

The UCLA AS topologies display a completely different evo-
lution to the Skitter dataset, more consistent with expectation.
As the three upper graphs of Fig. 9 show, the number of ASs,
AS edges, and the average node degree are all increasing, as ex-
pected in a growing Internet.

The increasing assortativity coefficient indicates that ASs in-
creasingly peer with ASs of similar degree. The preferential at-
tachment model seems to be less dominant over time. This trend
towards a less disassortative network is consistent with more
ASs’ bypassing the tier-1 providers through public IXPs [31],
hence connecting with nodes of similar degree. Another pos-
sible explanation for the increasing assortativity is an improve-
ment in the visibility of noncore edges in BGP data. Contrary to
Skitter, for UCLA decreases over time. As a weighted
clustering metric, indicates that the transit part of the
AS topology is actually becoming sparser over time compared
to the periphery. Increasing local peering with small ASes in
order to reduce the traffic sent to providers decreases the hi-
erarchy induced by strict customer–provider relationships and,
in turn, decreases the number of 3-cycles on which is
based.

To further investigate this result, we now introduce supporting
evidence using -cores. A -core is defined as the maximum
connected subgraph of a graph with the property that

.19 As pointed out by Alvarez-Hamelin et al. [32],
the -core exposes the structure of a graph by pruning nodes
with successively higher degrees and examining the maximum
remaining subgraph. Note that this is not the same as simply
pruning all nodes with degree or less. Fig. 10 shows the pro-
portion of nodes in each -core as a function of for the Skitter
topologies. There are 84 plots shown over the seven years, but
as can be seen, there is little difference between each of them,
demonstrating that the proportion of nodes in each core is not
changing over time. This is not surprising due to the nature of
the Skitter sampling process: the Skitter dataset is composed of
traceroutes rooted at a limited set of locations. The observed

19To take the �-core of a graph, we first remove all nodes with degree one.
This might split the graph into two or more pieces, in which case we take the
largest piece. We then remove all nodes of degree two and repeat � times.

Fig. 11. �-core proportions, UCLA AS topology.

network is therefore treelike, and so the -core typically just re-
moves the leaves of the tree. Reference [32] referred to this as
being similar to peeling the layers from an onion. From an evo-
lution point of view, this result shows that, although the number
of nodes being sampled by Skitter is decreasing, the hierarchy
of the Internet as observed by Skitter is not changing. This also
implies that Skitter is not sampling the edge of the AS topology
well and so cannot see evolutionary changes there.

Fig. 11 shows the proportion of nodes in each -core as a
function of for the UCLA data set. There are 52 plots (for
more than four years) shown as a smooth transition between the
first and last plots, emphasized. As can be seen, the distribu-
tion of -cores moves to the right over time, indicating that the
proportion of nodes with higher connectivity is increasing over
time. This adds further weight to the conclusion that the UCLA
dataset shows a weakening of hierarchy in the Internet, with
more peering relationships between ASs. Note that the UCLA
dataset was not examined in [32].

Next we examine the WSDs for the two datasets; a subset
showing their evolution is presented in Figs. 12 and 13. There
are two peaks that evolve (Skitter) and disappear (UCLA). Com-
paring Figs. 12 and 13 with Figs. 7 and 8, we confirm the results
given by the other graph measures. The WSDs show in the case
of the UCLA dataset (Fig. 12) a less dominant core (the core
peak is disappearing) and less structured Internet (the WSD is
getting lower and moving to the right), while Fig. 13 shows a
more dominant core for Skitter and a more structured Internet
(the WSDs are increasing and moving to the left).

The differences in AS topology evolution observed by Skitter
and UCLA are likely to reflect different views of the Internet
from the two datasets. The IP-level traceroute-based Skitter
traverses paths and sees only a small portion of the AS-level
topology, mainly at the core. In contrast, the BGP data of the
UCLA dataset are provided by public feeds from monitors not
located at the core. In conclusion, the WSD provides a valuable
tool together with more traditional graph measures for network
characterization.

C. Tuning Synthetic Topology Generators

This section examines the estimation of optimal parameters
for several well-known topology generators. Parameter estima-
tion requires two elements: a metric and a target graph. The aim
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Fig. 12. Weighted spectral distribution, UCLA AS topology.

Fig. 13. Weighted spectral distribution, Skitter AS topology.

is then to estimate the parameters that give a best fit between the
target graph and the topologies generated. Typically, topology
generator parameters are tuned by matching measures such as
the number of links, the node degree distribution, or the clus-
tering coefficient [33], [34]. However, as these are not metrics
in the strict sense, obtaining a “good fit” does not mean that the
topology generator is a good model of the target graph. For ex-
ample, we can tune the AB model to match the clustering coef-
ficient of our target graph exactly, but then the degree distribu-
tions might differ. The core question here is: is the target graph
likely to have been generated by this topology generator? As the
WSD is a metric, obtaining identical or close WSDs implies that
the target is likely to have been generated by this topology gen-
erator. However, this can only happen if the topology generator
is capable of mimicking the structure of the target graph. As will
be seen, all the topology generators examined in this section fail
to do so. For a more detailed examination of this application, see
Haddadi et al. [6].

The topology generators we consider are Waxman [35], AB
[23], GLP [34], Inet [11], and PFP [36] (PFP does not have
any parameters but is included for completeness of the compar-
ison). For this paper, we use a particular sample AS topology,
the Skitter graph from March 2004 as used by Mahadevan et

Fig. 14. ��� �� ���� for allowed values of ��� � � � � �.

al. [37]. The process we describe could easily be applied to
other sampled AS topologies. The cost function used is the stan-
dard quadratic norm between the weighted spectral distributions
using a value of ( gives similar results)

(20)

where the distribution of eigenvalues is estimated in the set of
bins and is the cost between the weighted
spectra of the Skitter graph and the graphs generated by the
th topology generator using a vector of parameters .

To facilitate this comparison, grids are constructed over the
possible values of the parameter space and is
evaluated at each point. For example, Fig. 14 shows the case for
the AB model, which has two parameters . The
first thing to note is the dark region at the center of the graph,
which represents those parameter values that return the lowest
values of . Fig. 14 shows that the WSD varies
smoothly with changing structure. The AB model is known to
exhibit scale-free behavior below the line indicated in Fig. 14
and exponential behavior above this line. It is satisfying to note
that a clear minimum exists and also that the region with low
cost (Region A) lies in the scale-free region as expected for a
model of the Internet. Similar results were also found for the
other topology generators [6].

As an aside, a similar grid was also constructed using
the spectrum—specifically, the unweighted spectral distribu-
tion—as the basis for a cost function

(21)

The resulting grid is shown for the AB model in Fig. 15. As
can be seen, does not change smoothly with ,
which implies that a small change in the structure can lead to a
large change in the spectrum. In other words, the tuning of the
topology generator parameters through a cost function based on
the spectrum is too sensitive to changes in the graph structure.
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Fig. 15. � �� �� ���� for allowed values of ��� � � � �� �.

Fig. 16. Best fit WSDs for topology generators relative to target Skitter data
set.

The main reason for this was shown in Fig. 1: the variance in
the spectral gap is too large.

In order to estimate the optimum parameters for the topology
generators,20 we optimize (20) using the Nelder Meade simplex
search algorithm [38], [39].

Table II displays these optimum parameter values of the
topology generators when matching to the Skitter graph. In ad-
dition, Table II displays the values of , which
shows that PFP provides the closest fit, followed by AB, GLP,
Waxman, and, lastly, Inet. While these results are generally as
expected, the ranking of Inet as the least desirable topology gen-
erator is not, as it is one of the most recent models.

Fig. 16 shows the WSD of the target graph and of the “best
fit” WSDs for each of the topology generators. As can be seen,
the main peak in the WSD for the Skitter data occurs at a value
of . The Waxman generator peak occurs at ,
which is closer to one and demonstrates the greater amount of
random structure in the Waxman topologies.

20For a given �, each run of a topology generator will lead to a different net-
work because of random initial conditions. This interferes with the estimation of
the gradients used in the search algorithm. Thus, to reduce the variance of gra-
dient estimates, the averaged weighted spectra from ten runs are used, although
empirical evidence suggests that the variance of these weighted spectra is very
low (see Fig. 1).

The INET generator is interesting in that it is the one gener-
ator that obtains a peak at the correct point. This is due to the
nature of the generator: the parameter to the INET generator
specifies the percentage of nodes that are in a highly meshed
core. While a similar structure exists in the Skitter dataset, the
WSD shows that the INET core is too densely connected rela-
tive to the Skitter observations.

All the WSDs for the generated topologies lie to the right of
the target WSD, showing that the Skitter data have far more
structure than is mimicked by any of the topology generators.
It is important to note that these are the closest approximations
that the topology generators can make to the Skitter data. In
other words, it is simply not possible to force the AB model for
instance to have a peak at with amplitude of 0.03. It is
our experience that each topology generator leads to topologies
that cover only a small subset of the WSD space.

VI. CONCLUSION

In this paper we introduced a new metric, the weighted spec-
tral distribution. The WSD differs from other graph measures
such as the clustering and assortativity coefficients, the node de-
gree distribution, etc., in that it is a metric in the mathematical
sense, and so it can be used to measure the distance between two
graphs.

The WSD has many applications, and in particular can be
used for very large graphs because of its low computational re-
quirements, making it a good choice for topology tuning and
other applications that require multiple evaluations of a cost
function. We presented three applications of the WSD, using it
to understand i) the mixing properties of graphs, ii) the evolu-
tion of the AS topology, and iii) the tuning of Internet topology
generators to match a target graph.

Observed evolution in the WSD of the Internet graph, sup-
ported by evidence using other common graph measures, sug-
gests that the Internet is becoming more edge-centric. We cre-
ated a similar effect using our strawman model supporting this
hypothesis. In addition, we observed that the topology gener-
ators we examined fail to match the complex structure of the
Internet. This result is important for future topology generators:
the WSD could provide a valuable tool in their design and val-
idation.

In conclusion, the WSD provides a new analytical tool aug-
menting other the ability of the graph analyst to obtain a more
complete picture of a network’s structure. Future avenues of re-
search also include examining the WSD of large biological and
social networks, among others.

APPENDIX

METRIC DEFINITION

The metric we propose in this paper is

(22)

We now show that is a metric in the mathematical
sense. The difference between and is
similar to the difference between the sum squared error and the
root mean squared error. We prefer the sum squared error (i.e.,
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) in this application, as it provides the well-known
tradeoff between minimum variance and bias.

A metric satisfies the following four conditions:
a) (nonnegativity);
b) (identity of indiscernibles);
c) (symmetry);
d) (triangle in-

equality).
a) and c) follow directly from (22). Noting that all the ele-

ments of the sum in are positive
if and only if . Arranging (and in-
creasing the number of bins if necessary) the bins such that
each bin contains at most one eigenvalue requires to be
cospectral and isomorphic to . Two graphs may be cospec-
tral, i.e., they share the same spectrum but are not isomorphic.
However, studies have shown [40] that the number of cospec-
tral graphs falls dramatically with the number of vertices in the
graph. For example, only 0.05% of all graphs with 21 vertices
are cospectral and not isomorphic; this number is thought to de-
crease with increasing number of vertices [40]. Thus, condition
(b) is true almost certainly, in the statistical sense.

defines the standard metric space [41].
This can be seen by distributing the weights (1 ) as

(23)
where

(24)

and is similarly defined. The triangle inequality
holds for (23). For a detailed proof, see [41, Ch. 2, Section V].
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