
Detection and Analysis of
Routing Loops in Packet Traces

Urs Hengartner, Sue Moon, Richard Mortier, Christophe Diet

Abstract--
Routing loops are caused by inconsistencies in routing state among a

set of routers. They occur in perfectly engineered networks, and have a
detrimental effect on performance. They impact end-to-end performance
through increased packet loss and delay for packets caught in the loop, and
through increased link utilization and corresponding delay and jitter for
packets that traverse the link but are not caught in the loop.

Using packet traces from a tier-1 ISP backbone, we first explain how
routing loops manifest in packet traces. We characterize routing loops in
terms of the packet types caught in the loop, the loop sizes, and the loop
durations. Finally, we analyze the impact of routing loops on network per-
formance in terms of loss and delay.

I. INTRODUCTION

Inconsistencies in routing state cause routing loops in the In-
ternet. A routing loop causes packets trapped in the loop to be
delayed or discarded, depending on whether or not the packet
exits the loop. Internet routing protocols aggregate routable ad-
dresses into prefixes, and so many packets can be caught in a
loop involving a given prefix, allowing routing loops to impact
a substantial quantity of traffic.

We present a new method for detecting routing loops from
packet traces, and apply our method to a selection of packet
traces taken from Spfint's IP backbone.

Routing loops cause packets caught in the loop to traverse
the same link in the network multiple times, and to show up
as replicas of the original packet in the trace. We term a set
of replicas with a suitably decrementing TTL (Time-To-Live) a
replica stream and identify replica streams in the traces. As one
routing loop may cause many packets to be replicated, we then
merge replica streams caused by the same routing loop.

There are two forms of routing loop that occur: transient and
persistent. Transient loops occur as part of the normal opera-
tion of the routing protocol due to the different delays in the
propagation of information to different parts of the network.
Transient loops should be resolved without intervention as the
routing protocols converge. Persistent loops arise for a num-
ber of reasons, perhaps most commonly router misconfignra-
tion. Eliminating a persistent loop thus requires human inter-

Urs Hengartner is with the Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA 15213, USA. Email uhengart@cs.crnu.edu

Sue Moon is with Sprint ATL, 1 Adrian Court, Burlingame, CA 94010, USA.
Email sbmoon @ sprintlabs.corn

Richard Mortier is with Microsoft Research Ltd., 7, JJ Thomson Avenue,
Cambridge UK CB3 0FB. Email rnort@raicrosoft.corn

Chfistophe Diet is with Sprint ATL, 1 Adrian Court, Burlingame, CA 94010,
USA. Email cdiot@sprintlabs.corn

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted wi thout fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IMW'02, Nov. 6-8, 2002, Marseille, France
Copyright 2002 ACM ISBN 1-58113-603-X102/0011 ... $5.00

vention. Persistent loops are difficult to analyze for two reasons.
First, they are rare. Second, they often occur across multiple
ASs (Autonomous Systems) and so require cooperation of many
network operation groups to be analyzed [1]. Consequently we
do not discuss persistent loops in this work, but focus rather on
analysis of transient routing loops.

We propose a loop detection algorithm and use it on packet
traces taken from a selection of Internet links to analyze the im-
pact of routing loops on the performance of the network. Losses
due to routing loops remain very small, but for brief moments
loops can cause the loss rate to increase significantly. Routing
loops from which packets do not escape have no effect on the
delay performance of the network. However, the delay of pack-
ets that do escape a routing loop is increased by 25 to 1300 ms,
an increase in similar magnitude to the normal end-to-end delay
of the Internet.

The remainder of this paper is organized as follows. In Sec-
tion II we demonstrate how transient routing loops can arise
even when the network is operating normally and in Section III
we review related work. In Section IV we present our algorithm
to detect loops from packet traces. In Section V we apply the
algorithm to packet traces collected from a selection of Internet
links. Section VI concludes the paper.

II. ROUTING LOOP EVOLUTION

A router in today's Internet belongs to an AS (Autonomous
System), and different ASs typically correspond to different ad-
ministrative domains. Routing information within an AS is dis-
tributed via intra-domain routing protocols such as OSPF and
IS-IS [2], [3]. Routing information between ASs is distributed
via inter-domain routing protocols, of which BGP is the only
currently deployed example [4]. Finally, BGP is also used to
propagate external routing information within an AS. When
used for the former purpose, it is referred to as E-BGP, and when
used for the latter purpose as I-BGP.

Routing protocols distribute information through the network
so that all reuters in the network eventually converge to a con-
sistent view of the network. Consequently, routing loops occur
either as a result of temporary inconsistency arising during the
convergence process, or as a result of more permanent inconsis-
tency due to misconfiguration or route oscillation. As explained
earlier, in this paper we focus on the analysis of transient loops,
and leave analysis of persistent loops to future work.

A. Transient Loops

A simple example of the evolution of a transient routing loop
is shown in Figure 1. Consider a small network of three nodes,
R1, R2, and R3. These nodes are connected, with solid lines rep-
resenting physical links, and dotted lines representing the flow

107

all BGP sessions carried on that link also to go down. All pre-
fixes advertised on such sessions must then be withdrawn.
• A prefix routed via one router being newly advertised by an-
other where the new route is to be preferred.

In OSPF and IS-IS transient inconsistencies arise between the
link-state databases of participating nodes due to delays in for-
warding updated link-state information.

(a) Initial state. (b) Link failure de-
tected by R1 but not
by R2 or R3.

%..

(c) R1 and R3 agree (d) Convergence
but R2 is confused, achieved.

Fig. 1. Scenario for a transient routing loop.

of traffi,~ between nodes. Nodes with consistent routing state are
shown ,with the same shading. Traffic from all three nodes to
other networks initially travels through R1 as depicted in Fig-
ure l(a); R2 has also advertised an alternative route to other
networks.

The link connecting R1 to other networks fails and so R1 is
the first to detect the failure. Traffic should now flow to other
networks via R2, as shown in Figure l(d). However, until R2
learns of the failure of R1, it continues to direct traffic for other
nodes in the network to R1. Since R1 knows that its link has
broken and an alternative path is available via R2, it forwards
this traffic back to R2 resulting in traffic looping as shown in
Figure l(b).

In Figure l(c) the updated information has reached R3 before
R2. Thus R3 begins sending traffic destined for other networks
to R2. As R2 is still unaware that R1 has failed, it continues
to send this traffic to R1, which returns it to R2. Finally, in
Figure l(d), information about the link failure reaches R2 and
so it stops routing traffic for other networks to R1, and uses its
own link: instead. Thus the loop has disappeared.

The scenario depicted in Figure 1 is of a routing loop involv-
ing just two routes separated by a single hop. However, routing
loops involving more than one hop can also occur, since the only
requirement for a loop to form is that the routing information in
two routers becomes unsynchronized.

Transient loops arise in the Intemet since all of BGP, OSPF
and IS-IS admit such transient incomistencies, in addition to
converging at different speeds. In the case of BGP, transient
loops c~m arise due to:
• A p~;r withdrawing one or more prefixes that are also adver-
tised via other peers, requiring its neighbors also to withdraw
them and switch to altemative routes.
• A connecting link to a peer going down, potentially causing

B. Loop Resolution

The duration of a transient loop is directly related to the con-
vergence time of the routing protocol in question. It has been
shown that BGP convergence is not fast, in certain cases tak-
ing on the order of tens of minutes [5]. The convergence times
of link-state protocols such as OSPF and IS-IS are affected by
a number of factors: the time taken to detect link failure; the
time taken to flood new topology information; and the time
taken to perform any required shortest path recomputation [6].
More recent findings show that implementation and configura-
tion dependent timer values and FIB (Forwarding Information
Base) update times add significantly to the overall convergence
time [7].

The time it takes a router to detect link failure depends on
the interface type, but is usually on the order of milliseconds for
point-to-point links. In any case, it is limited by a timer taking
values on the order of tens of seconds. Following failure detec-
tion, new information is flooded and shortest paths recomputed
where necessary. Several factors affect these times: damping al-
gorithms are used to prevent spurious updates, potentially delay-
ing the propagation of updated information; the diameter of the
network affects the time token to flood new information; and the
implementation of the shortest path algorithm affects the time
taken to perform the recomputation. The end result is that such
link-state protocols typically converge in seconds.

One should note an important difference between transient
loops arising from the EGP (Exterior Gateway Protocol) and
those arising from the IGP (Internal Gateway Protocol). In the
former case, loops are caused by an event external to the AS,
whereas in the latter they are caused by changes local to the AS.
Thus, it is harder to control the impact on a network of loops
due to the EGP since the causes are typically outside the control
of the network operator.

I I I . R E L A T E D W O R K

As routing tables have grown exponentially in recent years t,
the performance and behavior of routing protocols have become
critical issues in network performance, management and engi-
neering [8]. It is possible to detect certain BGP misconfiguration
errors by examination of conflicting short-lived updates of ori-
gin AS changes, but such detection is difficult to automate [1].

Paxson has studied routing loops using end-to-end traceroute
measurements collected in 1994 and 1995 [9]. Although his
work focuses on persistent loops, he detects a few transient
loops, and conjectures that such loops are caused by link fail-
ure information about single link failures propagating through
the network.

ISeehttp://www.telstra.net/ops/bgp/index.html furexam-
pM.

108

Labovitz et al. have studied the impact of delayed routing
convergence on connectivity, packet loss, and latency [5]. Mea-
surements were taken by injecting path failures into the network,
and using ICMP echo ('ping') packets sent to a set of web sites
beginning 10 minutes before the path failure event. They found
that convergence times in inter-domain routing are on the order
of minutes, and that end-to-end loss and latency increase sig-
nificantly during convergence. More recent work by Freedman
shows that there is a correlation between BGP churn and UDP
packet losses [10].

As an alternative to such work, we focus on the detection of
routing loops from packet traces captured on backbone links.
Loop detection using end-to-end tools such as traceroute is
error-prone and cannot help assess the impact on traffic not
looped. It is also hard to successfully detect transient loops with
such techniques. By using off-line analysis of traces contain-
ing the header of every packet traversing a link, we can detect
routing loops as manifest by the same packet traversing the link
many times in a short period. This gives us more complete infor-
mation about routing loops, which allows us to go on to quanti-
tatively capture the performance degradation due to these loops.

In the next section we describe how we detect routing loops
from packet traces, and go on to analyze their duration, com-
position in terms of packet types, and length in terms of router
hops.

IV. R O U T I N G L O O P D E T E C T I O N

This section presents our algorithm for detecting loops from
packet traces. Results of this algorithm and verification of the
results are presented in following sections.

A. Detection Algorithm

Routing loops cause replicas of a packet to cross a fixed point
in the loop. A set of replicas is called a replica stream, and
it corresponds to multiple instantiations of a packet on a single
link. We use these replica streams to detect routing loops. The
algorithm has three steps:

Step 1. Detect replicas.
Step 2. Validate replica streams (sets of replicas).
Step 3. Merge replica streams into routing loops.

The result of this algorithm is a collection of merged replica
streams. Each of these merged sets indicates that a routing loop
occurred between the first packet in the set and the final packet
in the set. We now discuss each step in the algorithm in detail.

A.1 Detecting Replicas

We detect replicas of the same packet crossing a link by de-
termining whether two packets are replicas of a looping packet.

Specifically, two packets a and b where b is observed after
a are considered to be replicas of a single looped packet if their
headers are identical except for the T r L and IP header checksum
fields; their'YI'L values differ by at least two; and their payloads
are identical. The IP identification field in the IP header serves
to distinguish packets that are loopecl from those that are simply
part of the same 'connection.'

The packet traces used in our evaluation contain only the first
40 bytes of a n / P packet. For a TCP packet with neither IP
nor TCP options, a trace thus includes the IP and TCP or UDP

headers, but not the TCP or UDP payloads. Consequently, we
assume two packets have identical payloads if they have identi-
cal TCP or UDP checksums.

A.2 Validating Replica Streams

For a set of replica packets to be evidence of a routing loop,
it must satisfy two conditions.

First, we eliminate those having only two elements. Such
affects are often due to the link-layer injecting duplicate packets.
For example, the sender may fail to drain the packet in a token
ring, or a misconfigured SONET protection layer may transmit
packets on both the working and protection links.

Second, we verify that all packets to the same prefix are part
of replica streams during the time of the proposed routing loop.
We merge replicas of packets with destination addresses with
the same 24 bit prefix into single replica streams, as 24 bits is
the longest prefix currently honored by tier- 1 ISPs.

Since routing loops signify a transition in routing state, the
longest prefix match may change before and after the transition.
Merging replica streams according to the relevant entries in the
routing table does not make sense, unless we can reconstruct
the exact sequence of protocol state changes in a router from
receiving a route update to the updating of the FIB on the inter-
face from which the packet trace was collected. To do so would
require complete routing tables, or better, complete update logs,
from the particular routers from which traces were taken; this
information is not available for the traces in question.

If a packet with the same destination subnet a.s a replicated
packet does not itself belong to a replica stream, then other repli-
cas observed at that time cannot be due to a routing loop, since
the loop should affect all packets to the destination in question.

Replicas not satisfying these conditions are ignored. We term
the resulting sets of replica packets replica streams; each replica
stream originates from a single unique packet.

A.3 Merging Replica Streams

At this point we have identified replica streams that indi-
cate a routing loop could be in progress. Consequently, to gain
more insight about the duration of routing loops causing replica
streams, we now merge replica streams likely to be due to the
same routing loop.

First, we merge replica streams that overlap in time and have
identical destination address prefixes. Such replica streams have
high probability of being caused by the same routing loop.

However, simply merging replica streams in the same subnet
underestimates the length of a routing loop if there are points
in the loop where there are no replica packets to detect. Conse-
quently, we also merge replica streams that occur less than one
minute apart provided that (as in step 2) the resulting merged
replica stream does not overlap with packets to the subnet that
are not looped 2. As we validate each merged replica stream
against routing updates for a possible loop, it can be considered
to be from a single loop and is referred as such in the remainder
of the paper.

2We also tried 2 and 5 minute intervals, but found the number of merged
replica streams not to be significantly different to using 1 minute intervals.

109

V. RESULTS

We use a set of packet traces collected from Sprint's tier-1 In-
ternet backbone [11]. They were gathered in parallel over mul-
tiple uni-directional OC-12 links on the east coast of the US. All
of the links connect two distinct ASs, each under separate ad-
ministrative control. The first two traces started at 13:00 GMT
on November 8th, 2001, and the second two at 20:00 GMT on
February 3rd, 2002.

:['race Length Avg BW
(hours) (Mbps)

Backbone 1 24 1
Backbone 2 7.5 243
Backbone 3 11 2.2
Backbone 4 11 107

Packets Looped
Total (10 s) Packets

50
1 677

20
1 350

2 419 792
1 987 309

337 570
364 230

TABLE I
D E T A I L S O F T R A C E S .

Table I provides the length, average bandwidth, number of
packets, and number of individual looping packets found in the
traces. Backbones 1 and 3 have very low link utilization. The
absolute number of looped packets on Backbone 2 is similar to
that on Backbone 1, but lower in relative terms since Backbone
2 has a :much higher average bandwidth of 243 Mbps giving a
total of 1.7 billion packets.

A. General Observations

We consider three metrics in our analysis of the routing loops:
the amount by which replicas have their TTL decremented (the
TTL delta), the number of replicas in a replica stream, and the
inter-replica spacing caused by the loop.

0.9 ~ Backbone 2
Backbone 3

0.8 Backbone 4

0.7

~0.5
~ |

°'41 ~,

0.10'311 ! ,'-~'~
0.2 i

0 S 10 15 20 25 30
"I-I'L delta

propagated via flooding in IGP (Interior Gateway Protocols) and
to fully meshed peers in I-BGP (Internal-Border Gateway Pro-
tocol), two adjacent routers at the boundary of the update propa-
gation are most likely to create a transient loop, and that is why a
TTL delta of 2 is most common. As it requires only two routers
to become unsynchronized to create a loop, and the updates can
propagate at different speeds to different parts of the network,
the distance between those two routers can be greater than one
hop, creating replica streams with a 'Iq'L delta larger than 2.

1

0.$

0.~

0.7

O.E

~0.~

O.Z

0.3

OA

/i ji! ! -

20 40 60 80 100 120 140
siZe [packets]

Fig. 3. CDF of the number of replicas in a replica stream.

Figure 3 shows the CDF of the number of replicas in a replica
stream. For all of the backbone links there are jumps at 30 and
60 replicas. These jumps are due to the common TTL delta on
these links being 2, in conjunction with 64 and 128 being popu-
lar initial TTL valucs for Linux and Windows 2000 respectively.
A packet with an initial TTL of 64 will cause approximately 30
replicas to be generated as it traverses a loop with a TTL delta
of 2, before it is discarded.

1

0.9

0.8

0.7

~o~

0.5

0.4

0.3

0.2

j ,- -~

..... ; ! i
j ~

..... --"

. ; '

100

~:~, Backbone 1 [
Backbone 2
Backbone 3
Backbone 4

2~o ~o 4~o soo
spacing [ms]

Fig. 4. CDF of inter-replica spacing time.

Fig. 2. TTL delta distribution.

The difference in the "VFL value of two sequential replicas
indicates the number of nodes involved in the routing loop. In
Figure 2, we give the distribution of the TTL delta of all replica
streams detected in a trace. In Backbones 1, 2, and 3 the ma-
jority of replica streams have a TTL delta of 2, and 5 to 10% of
have TTL deltas between 12 and 18. Backbone 4 has has ap-
proximately 55% and 35% of replica streams with TTL delta of
2 and 13, respectively.

A TTL delta of 2 typically corresponds to routing inconsis-
tencies between two adjacent routers. As routing updates are

Finally, in Figure 4 we plot the CDF of inter-replica spacing
in time. We use an average of all inter-replica spacing times cal-
culated per replica stream. In Backboncs 1 and 2 about 90% of
replica streams have inter-replica spacing times less than 80 ms
and almost 100% under 150 ms. In Backbones 3 and 4, 65%
and 55% of replica streams have less than 10 ms, and almost all
less than 150 ms and 220 ms, respectively. The common step
shapes detected in all traces are due to the dominant 'VFL delta
values in the traces in conjunction with the common initial 'VrL
values of 64 and 128. The larger the TTL delta is, the more hops
a replica traverses, resulting in longer inter-replica spacing time.
We identify those replica streams with TTL deltas larger than 10

llO

to have inter-replica spacing times larger than 50 ms.
The inter-replica spacing gives an indication of the time taken

to traverse the loop, and hence the minimum delay imposed on
packets caught in a loop. The increased packet delay due to a
loop can be explained from the initial TTL value and the rater-
replica spacing. The higher the initial TTL value, and the longer
the inter-replica spacing time are, the longer delay the packet
experiences. Consequently, a larger contribution is added to the
end-to-end delay if the packet ever escapes the loop.

B. Replica Properties

1

os

os

or

cos

~o~
O4

03

O~

01

Backbone 1
| I I I Backbone 2
,JI | ~ Backbone 3

TCP ACK PSH RST URO SYN FIN UDP MCABT ICMP 013~ER

Fig. 5. Traffic type distribution of all traffic.

0e

oe

07

c oe
o

o l

o~

o~

o~

Backbone 1
B B Backbone 2

Backbone 3
Backbone 4

TCP AOK PSH RST URG SYN FIN UOP MCASTICMP OTHER

Fig. 6. Traffic type distribution of looped traffic.

the traffic that would have been associated with that connection
being transmitted, whereas if a UDP packet is lost, that loss has
no effect on the transmission of other UDP packets.

Backbones 1, 2, and 3 have a high proportion of replica
streams involving ICMP packets. Most are 'echo request' and
'time exceeded' packets, but there is also one host that gener-
ates ICMP packets seen in Backbones 1 and 2 with multiple
'reserved' type fields. Although this is unusual behavior, we
are confident that the corresponding replicas are due to loops as
other packets sent to the same destination prefix by other hosts
also loop.

In general, we hypothesize that the high proportion of looped
ICMP traffic is caused respectively by end hosts pinging and
tracerouting when they see packets being lost, and by the routers
dropping packets that expire due to loops. Presence of such
streams of ICMP traffic might provide a strong indication that
a loop is in progress.

Z24.0.0.0~ ~ • m
.. ?

160.0.0.01" " = ~ # ° ° ° '~ " I
128000~

~ 0.0.01 -

64.0.0.0 I- -~

320.0.01

0.0.0.% ~.~ ~i oi ~ ~,i "i

Fig. 7. Destination addresses of replica streams in Backbone 1.

Figure 7 shows the destination addresses of replica streams
over time for a subset of the traces. This time-series plot reveals
that a wide spectrum of addresses are affected by routing loops
during the packet trace collection. Not all lengths of lP prefix are
equally affected. There are more looped packets in the Class C
IP addresses (192.0.0.0 to 223.255.255.255), either due to this
portion of the address space being more highly utilized, or to
link-specific traffic dynamics.

We now investigate the properties of the packets caught in the
routing loops. Figures 5 and 6 plot the distribution of the various
packet types for all traffic on the link, and for all replica streams
respectively. Intemet traffic consists principally of TCP, UDP,
and ICMP packets. Note that a single ~eplica can show up in
multiple categories, a TCP SYN-ACK being listed in all of the
TCP, SYN, and ACK categories for example. In all traces TCP
packets take up more than 80% and UDP packets take up about
5% to 15% of the total packets on the link. TCP SYN and FIN
packets take less than 10%.

The proportion of the total looped traffic made up of SYN
packets is higher than the proportion of SYNs in the total traf-
fic (looped and not looped) on the link. Since looped packets
tend to expire in the loop, the looped SYNs do not successfully
create a TCP connection and so they do not cause further TCP
traffic to be transmitted. TCP does not transmit data traffic if the
connection is not made or if a packet is lost, but UDP has no
such restriction. Effectively, if a TCP SYN is lost, that prevents

C. Duration of Routing Loops

0.70"8 , , , f . . , . , ,~ , . , . . : ' ' ' "

0.e i.

o.4 ~-=~.:-~/;
[,

0.3' i /

0.2
0.1! - - . Backbone 2

" " Bsck i~ ' le 3
[Ba~bot le 4

o~ ~o lobo ,~o ~oo ~oo
duration [ms]

Fig. 8. CDF of replica stream duration.

We now consider the duration in time of replica streams, and
finally of detected routing loops.

111

0.2hi ~ Bac~btxla 1
Backbone 2

0.1 ~ Backbone 3
Ol Backbone 4

o 1o ~ go ,'o ~o io
duration Is]

Fig. 9. CDF of routing loop duration.

In Figure 8 we plot the CDF of the duration of replica streams,
given by the time difference between the first and last replicas in
a replica stream. For Backbones 1 to 3, most replica streams last
less than 500 ms, and as in Figure 3, there is a stepwise pattern
due to the T r L delta of the loop and the initial TTL of the looped
packet. However, this pattern is less distinct than the previously
observed step patterns, most probably due to the increased ran-
dom noise such as queuing delay that affects the lifetime of a
packet in a loop. In Backbone 4 there are three noticeable step
increases at around 10, 700 and 1800 ms. Recalling from Fig-
ure 3 that Backbone 5 has three dominant initial 'VFL values, the
steps are self-explanatory.

Table I/presents an overview of the results, giving the num-
ber of raw replica streams and the number of routing loops after
all merging as described in Section IV-A.3 has taken place. This
table she.ws that the many replica streams that occur in the traces
typically merge well, and are caused by comparatively few rout-
ing loop~;.

Trace Replica Streams Routing Loops

Backbone 1 79257 852
Backbone 2 70144 413
Backbone 3 7377 1485
13ackbone 4 11997 1568

TABLE II

NUMBER OF ROUTING LOOPS.

Figure: 9 plots the CDF of routing loop durations after replica
streams have been merged following the algorithm described in
Section IV. In this figure, we can see that 90% of the loops are
short in duration, lasting less than ten seconds in Backbones 3
and 4. The convergence time in routing state involves a change
detectio~ (a link failure or a new link), update propagation, and
recalculation of the shortest paths. Our finding that the loop
duration is mostly under 10 secon4s is in agreement with the
parallel work that the convergence time after a link failure in
the current Internet is between 5 to 10 seconds [7]. In case of
Backbones 1 and 2, we observe longer loops. As future work,
we will look into the causes behind observed replica streams and
merged loops, and adderess routing behaviors that have caused
these long-lasting loops.

V I . SUMMAR Y

We showed how to detect routing loops from packet traces.
We described in detail a routing loop detection algorithm, and
explained how we verified its results. We applied the algorithm
to packet traces from the Sprint/P backbone network, and ana-
lyzed replica streams in terms of TTL deltas, numbers of pack-
ets, and inter-replica spacing times.

Routing loops of any sort can lead to significant performance
degradation. We analysed the impact of routing loops on link
utilization, and report that it could contribute up to 90% of
packet loss per minute, depending on the trace, eventually im-
pacting the queueing delay of other packets [12]. However,
losses due to routing loops remain very small for most of the
time. Routing loops also significantly increase the delay ex-
perienced by packets that escape. Between 0.6% and 11% of
looping packets escape their loop, and incur between 25 ms and
1300 ms extra delay. We note that those packets that escape a
loop can be delivered out-of-order.

Analysis of merge routing loops showed that the majority of
them last shorter than 10 s, while 30% of loops on a subset of
links last longer than 10 s. Although our verification of loops
provided plausible mechanisms to correlate replica streams, the
routing behaviors behind the loops remain unknown. In further
work, we are extending our data collection techniques to include
complete BGP and IS-IS routing data. This will enable a more
detailed analysis of routing loops through a single link to be
performed, and allow us to provide explainations of the causes
and effects of routing loops.

R E F E R E N C E S

[1] R. Mahajan, D. Wetherall, and T. Anderson. Understanding bgp miscon-
figuration. In To appear in Proceedings of SIGCOMM, Pittsburgh, PA,
August 2002.

[2] R. Perlman. Interconnections: Bridges, Routers, Switches, and Inter-
networking Protocols. Addison-Wesley Professional Computing Series,
1999.

[3[J. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley,
1998.

[4] J.W. Stewart III. BGP4: Inter-Domain Routing in the Internet. Addison-
Wesley Networking Basics Series, 1999.

[5] C. Labovitz, A. Ahuja, A. Bose, and E Jahanian. Delayed Interact routing
conx~ergence. In Proceedings of SIGCOMM 2000, Stockholm, Sweden,
August 2000.

[6] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards miUi-second IGP con-
vergence. IETF draft, November 2000.

[7] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot.
Analysis of link failures in a large IP backbone. In To appear in Proceed-
ings of SIGCOMM IMW 2002, Marseille, France, 2002.

[8] G. Huston. Analysis of the Internet's B GP routing table, lnternet Protocol
Journal, 4(1), March 2001.

[9] V. Paxson. End-to-end routing behavior in the Internet. IEEE/ACMTrans-
actions on Networking, 5(5):610-615, November 1997.

[10] A. Freedman. Edge/core update propagation, churn vs. performance. Pre-
sentation at Internet Statistics and Metrics Analysis workshop (ISMA),
December 2001.

[11] C. Fraleigh, S. Moon, C. Diot, B. Lyles, and F. Tobagi. Packet-level traffic
measurements from a tier-1 IP backbone. Sprint ATL Technical Report
TRO1-ATL-110101, November 2001.

[12] U. Hengartner, S. Moon, R. Mortier, and C. Diot. Detection and analysis
of routing loops in packet traces. Sprint ATL Technical Report TRO2-ATL-
051001, May 2002.

112

