218 UNIVERSITY OF

1““1

EDGELESS

Unlocking extra cluster capacity with
enhanced Linux cgroup scheduling

FOSDEM 2026, Kernel Track
Al-Amjad Tawfiq Isstaif, Evangelia Kalyviannaki, Richard Mortier

Systems Research Group,
Department of Computer Science & Technology,
University of Cambridge, UK

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

2.5 UNIVERSITY OF

¥ CAMBRIDGE

https://arxiv.org/abs/2508.15703

Motivation St

| [
| [
. [|
* Originally interested in densely packing unikernels ~
onto servers, aiming to improve on Kubernetes and Nodgat
capaci
serverless performance i Y
* Measurements of serverless workloads made no Task |I
sense: CPU utilisation was too high, throughput resource < | I < D
was too low — performance was degraded |§ 4 §| :
* Why? With increasing workload density (10s or ool —
100s of containers), context-switch overhead takes e fimits A
up to 25% CPU time due to how the scheduler 5 i
manages cgroups and allocation acrosscores | B
* How to fix it? We developed an alternative c Ll c
scheduler that mitigates this problem, allowing the . . : :
same performance on a 28% smaller cluster a) Container packing b) Container packing
based on CPU based on CPU
resource reservation multiplexing

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

B8 UNIVERSITY OF
¥ CAMBRIDGE

https://arxiv.org/abs/2508.15703

Group scheduling with cgroups

* For N tasks, CFS gives each runnable task
a minimum timeslice (*4ms) and grows
the scheduling period to 4N ms

* Tasks are grouped by cgroup and
scheduled as a whole using per-cgroup
and per-core run queue structures to
prevent gaming the scheduler

Root
cgroup

* Locating the next task is optimised, but re- e
inserting preempted tasks increases cost of ;
pick_next task fair by several microseconds mmm e — | e
oo
* Higher per-context-switch cost and rate of e e

context-switches combine multiplicatively pick_next_entity

¥ 3 .’J
@‘i

put_prev_entity

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703
https://elixir.bootlin.com/linux/v5.18.19/source/kernel/sched/fair.c#L7278

B8 UNIVERSITY OF

https://arxiv.org/abs/2508.15703

Microbenchmark for function colocation

* Modify Meta’s resource control framework

to assess the impact of increasing the 103
number of concurrent cgroups 9 0%
. . .]
* Investigated given a very simple cgroup >
structure (i.e. faac.slice/func-{0- v 10!
) oervioc) MR
* Compare the standard closed-loop workload il

: . . Function order
(resctl) to one representing vertical-first

scaling open-loop concurrency (azure2021) o 6 6 0 6 0 0 6 o6 o

* Overhead measured with ftrace by
instrumenting the total time spent during
the core scheduler logic _ _schedule ()

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

218 UNIVERSITY OF

4% CAMBRIDGE

Quantifying CFS scheduling overheads

Peak Performance
Examine (a) throughput as (b) time spent performance degradation

context switching and (c) time of an
individual context switch increase for the
vertical scaling workload, azure2021

(a)Increasing colocation beyond node
capacity degrades throughput up to 35%

(b)Degradation can be attributed to the
growth of scheduling overhead to 5—20%
of CPU time at peak load

(c)Significant factor is the increase in the)
average cost of a single context switch to A o e I T IR

Density factor

10—20 microseconds mE azure2021 WEE resctl

(a) throughput
(b) total time in schedule()
20+ | | | ‘ ‘
0_

(c) average time per schedule()

req. (norm.)
=

o

CPU util. (%)

micro secs

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

https.//arxiv.org/abs/2508.15703

Latency-Aware Group Scheduling

* The key idea behind LAGS is to maximise task

completion rate within cgroups beyond the CPU usage of Function cgroups Reference period = 1,000 millicores
scheduler’s short scheduling interval r A
* Use a Shortest-Remaining Time First
approximation to prioritise the lightest e e e e e e e = =
1
1
cgr.o%lps b |
* This improves latency and reduces | sched period = n * min granularity CFS!

overhead as cgroups can exit the system

| 1
| 1

earlier making runqueues shorter ! |
I

L : . - _ - CFS-LAGS
* Approximation via Cgroup Load Credit metric .. 23 °F_‘ightest load cgroups first _ _ZoT08S }

that tracks recent CPU usage for all threads
within a cgroup

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk 6

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

i
i
i
xxxxx B
VS KRALES
‘A‘ 250
i

https://arxiv.org/abs/2508.15703

Static CFS-LAGS

[oracle]

CDF for group-hig 0 funcs DF for group-low (90 funcs)
1.0 1.0+ N - /__.—
NIRNTA G N TR
0.6 / / 0.6 / Z
AV o
| /TN, | /f
N N /

0.0
1000 2000 3000 4000 N0 1000 2000 3000 4000 5000 6000
Latency (millisecond) Latency (millisecond)

1 CFS [1 CFS-LAGS-static

* Allows the tail of lightest functions to complete and get out of the way
e And so the (small) number of heaviest functions also make better progress

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

.78 UNIVERSITY OF
¢¥ CAMBRIDGE

https://arxiv.org/abs/2508.15703

Realising CFS-LAGS

* CFS-LAGS is a sub-scheduling
architecture applying custom policies
to specific cgroups

~ 'kubepod-100 '

* The Load Credit metric becomes the s or] ey iy
scheduling priority for serverless | [gse Bo— i ' | '
: g p y i 1 : ! ! : : I
function cgroups et - iyl
Bl user-container kubepod-1 s-burstab k8s.slice
* The default CFS policy remains for all se —{ese | se e -
(s rq | ~plos]l N s _ra “ofs rq || <]

other cgroups

* Load Credit implementation averages the default per-entity load tracking (PELT) over a
~4s window vs default 32ms in PELT, preferring youngest tasks first

* Function cgroup identification identifies target group tasks (that is, cgroups) via a user
space cpu.latency awareness cgroup property

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

3 UNIVERSITY OF
CAMBRIDGE

C FS_ L AG S m iti g at e S OV e I"h e a d https://arxiv.org/abs/2508.15703

Larger function Performance

|]) Overhead
colocation Improvement e .
. . mitigation
P95 latency - total time in schedule() g
» =
& 100001 <20
= E
= 3
0 5 o
P50 latency number of calls to schedule()
n 10001 o
g 21
b S
S
0 #* 0!
- Throughput average time per schedule()
E1 8 20
S @
j = wn
@ o
o 9
] E o
#Hmmwmwhmmc‘—immvmwhmm A NM gt N O~ 00 O NM S N WS 0O
N N ~ A A ~ o ~ = L T e T e T T o O o O B B B |
Density factor Density factor
BEm CFS W OurSched Bm CFS mmm OurSched
Figure 9. Performance given increasing colocated functions Figure 10. Scheduling overhead given increasing colocated

under realistic arrivals (azure2021). functions under realistic arrivals (azure2021).

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

.78 UNIVERSITY OF

&¥ CAMBRIDGE

https://arxiv.org/abs/2508.15703

CFS-LAGS for tighter container packing

CPU resource sharing, low CPU
utilisation (~30%) given ~800

* BASE baseline of 14 nodes based | (
on requested peak CPU load. No 054 [/ | [I /

containers from azure2021 (~60 0.0 102 103 10% 0 50 100
cores) req. latency (millisecs) sum of func. usage (CPU cores)
* CFS used to statistically multiplex 1 BASE [CFS-LAGS 1 CFS J
containers onto 12 nodes. Max
density achievable given CFS-LAGS cluster (10 nodes)
requirement to keep CPU
utilisation below ~45% Cluster-wide latency Cluster-wide CPU :tilisation
. : Given the same density CFS creates a significant gap between
CFS-LAGS achleyes the same under CFS, the scheduling effective and perceived utilisation:
performance with 1 0 nodes and overheads translates into +100%, ~120 cores for CFS
higher CPU utilisation (~55%) ~6x increase in latency! vs +10%, ~65 cores for CFS-LAGS

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

https://arxiv.org/abs/2508.15703

Comparing CFS-LAGS to alternatives

. resctl resctl-parallel resctl-mixed
* Simply increasing timeslice to 10 % P 17;
100ms increases cgroup-level task . /] ///
completion and improves latency % J// %B
bUt not fOr mUItl'th readEd 0.0 102 103 102 103 104 101 102 10 104
milliseconds milliseconds milliseconds

workloads (resctl-parallel

, [12fn-CSF [1 120fn-CSF [1 120fn-CSF-LAGS [120fn-CSF-tuned
and resctl-mixed)

* EEVDF is difficult to tune under Lo resctl resctl-parallel resctl-mixed
high load (120 fn-EEVDF and L &/ —7
120fun-EEVDF-tuned) due ©s - =
to the virtual deadline scheduling 7 |
USEd to enforce thread'IeVEI mliI(I)i:econds 1 ol miIIlig:conds 1o 1o 1r?wzilliselc(fnds104
fairness (] 12fn-EEVDF [120fn-EEVDF [120fn-CSF-LAGS | 120fn-EEVDF-tuned

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

https.//arxiv.org/abs/2508.15703

Conclusions

* Cgroups are crucial to manage workloads in production but
— ...as load increases, reinsertion into the nested red-black tree structure

increases context-switch times
— ...which in turn increases the context-switch rate as CFS tries to achieve fairness

— ...and these two effects combine multiplicatively

* This increases latency variation dramatically while decreasing effective capacity
leading to poor bin-packing decisions by the K8s scheduler
— Appears to be mitigated currently by expensive, wasteful over-provisioning
— Even worse for serverless where desire to avoid cold-starts leads to artificially
increasing multiplexing by keeping idle tasks around

* CFS-LAGS unlocks 10—20% capacity by builds on CFS/EEVDF while using cgroups as
user-space control interface to encourage short tasks to complete early, keeping
runqueues shorter, reducing context switch overhead, and improving binpacking

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk 12

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

T

:,:h KIX

B UNIVERSITY OF
¥ CAMBRIDGE

S
| & » https://edgeless-project.eu/
X LY Funded in part by EU Horizon Europe under Grant Agreement No 101092950 h ttp s://arxiv.o rg/a bs/2508.15703

2 Status & Questions

e Currently
— Porting CFS-LAGS to latest 6.x kernels
- Extending to manage QoS for interactive, cgroup-
managed, multi-threaded workloads.
— Patch and benchmarks available via
https://github.com/isstaif/CFS-LLF_main

— Paper available via https://arxiv.org/pdf/2508.15703

e Several recent attempts to customise group

scheduling
— E.g., sched _ext cgroup sub-scheduling in v6.18 and
ScyllaDB’s user-space scheduler
— Exploring how far we can get using sched _ext (on
ARM...)

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703
https://github.com/isstaif/CFS-LLF_main
https://arxiv.org/pdf/2508.15703
https://edgeless-project.eu/

https://arxiv.org/abs/2508.15703

Backup slides

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

UNIVERSITY OF
CAMBRIDGE

https://arxiv.org/abs/2508.15703

CFS code paths

To which
core a
woken
task will SCHED_IDLE uses\this path to
be schedule tasks on thex\CPU core with
allocated the most idle number of\tasks which

should significantly improves latency

| check_preempt_curr | | select_task rq

[pick_next task_fair |

[schedule()

[check preempt wakeup |

| select_idle_sibling |
[find_energy_efficient cpu |

CFS iterator top-down

set next buddy |
set_last buddy |

/—{ Return false |

SCHED_IDLE uses this path to
prevent idle tasks from interrupting
any normal task these tasks are
always enqueued and run for a

| task_tick fair minimal granularity

| entity before |

CFS iterator bottom-up
| | _enqueue enti

put prev entity’ |
~—>| set_next_task_fair

| load_balance

[enqueue_task fair

for_each_sched_entity
[enqueue_entity

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

14

i

IR
‘‘‘‘‘ "l‘lli

i

«¥ CAMBRIDGE

CFS group scheduling data
structures

Root
cgroup

tg4->load avg tg3->load avg tg2->load avg tgl->load avg
\ tg3 \ \ \

]

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

	Unlocking extra cluster capacity with enhanced Linux cgroup sch
	Motivation
	Linux cgroup scheduling for serverless
	Microbenchmark for function colocation
	Quantifying CFS scheduling overheads
	Latency-Aware Group Scheduling (LAGS)
	Slide 7
	Realising CFS–LAGS
	Mitigating overhead with CFS-LAGS
	CFS-LAGS helps pack containers more tightly
	Comparing CFS-LAGS to other baselines
	Conclusions
	Slide 13
	Backup slides
	CFS code paths
	CFS group scheduling data structures

