
alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

Unlocking extra cluster capacity with
enhanced Linux cgroup scheduling

FOSDEM 2026, Kernel Track

Al-Amjad Tawfiq Isstaif, Evangelia Kalyviannaki, Richard Mortier

Systems Research Group,
Department of Computer Science & Technology,

University of Cambridge, UK

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

2

Motivation
• Originally interested in densely packing unikernels

onto servers, aiming to improve on Kubernetes and
serverless performance
• Measurements of serverless workloads made no

sense: CPU utilisation was too high, throughput
was too low – performance was degraded
• Why? With increasing workload density (10s or

100s of containers), context-switch overhead takes
up to 25% CPU time due to how the scheduler
manages cgroups and allocation across cores
• How to fix it? We developed an alternative

scheduler that mitigates this problem, allowing the
same performance on a 28% smaller cluster a) Container packing

based on CPU
resource reservation

b) Container packing
based on CPU
multiplexing

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

3

Group scheduling with cgroups
• For N tasks, CFS gives each runnable task

a minimum timeslice (~4ms) and grows
the scheduling period to 4N ms

• Tasks are grouped by cgroup and
scheduled as a whole using per-cgroup
and per-core run queue structures to
prevent gaming the scheduler

• Locating the next task is optimised, but re-
inserting preempted tasks increases cost of
pick_next_task_fair by several microseconds

• Higher per-context-switch cost and rate of
context-switches combine multiplicatively pick_next_entity

put_prev_entity

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703
https://elixir.bootlin.com/linux/v5.18.19/source/kernel/sched/fair.c#L7278

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

4

Microbenchmark for function colocation

• Modify Meta’s resource control framework
to assess the impact of increasing the
number of concurrent cgroups
• Investigated given a very simple cgroup

structure (i.e. faac.slice/func-{0-
x}.service)
• Compare the standard closed-loop workload

(resctl) to one representing vertical-first
scaling open-loop concurrency (azure2021)
• Overhead measured with ftrace by

instrumenting the total time spent during
the core scheduler logic __schedule()

❿❾❽❼❻❺❹❸❷❶

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

5

Quantifying CFS scheduling overheads
Examine (a) throughput as (b) time spent
context switching and (c) time of an
individual context switch increase for the
vertical scaling workload, azure2021
(a)Increasing colocation beyond node

capacity degrades throughput up to 35%
(b)Degradation can be attributed to the

growth of scheduling overhead to 5—20%
of CPU time at peak load

(c)Significant factor is the increase in the
average cost of a single context switch to
10—20 microseconds

Peak
performance

Performance
degradation

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

6

Latency-Aware Group Scheduling

• The key idea behind LAGS is to maximise task
completion rate within cgroups beyond the
scheduler’s short scheduling interval
• Use a Shortest-Remaining Time First

approximation to prioritise the lightest
cgroups
• This improves latency and reduces

overhead as cgroups can exit the system
earlier making runqueues shorter

• Approximation via Cgroup Load Credit metric
that tracks recent CPU usage for all threads
within a cgroup

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

7

Vanilla
CFS

Static CFS-LAGS
[oracle]

• Allows the tail of lightest functions to complete and get out of the way​
• And so the (small) number of heaviest functions also make better progress​

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

8

Realising CFS–LAGS
• CFS-LAGS is a sub-scheduling

architecture applying custom policies
to specific cgroups

• The Load Credit metric becomes the
scheduling priority for serverless
function cgroups

• The default CFS policy remains for all
other cgroups

• Load Credit implementation averages the default per-entity load tracking (PELT) over a
~4s window vs default 32ms in PELT, preferring youngest tasks first

• Function cgroup identification identifies target group tasks (that is, cgroups) via a user
space cpu.latency_awareness cgroup property

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

9

CFS-LAGS mitigates overhead
Overhead
mitigation

Larger function
colocation

Performance
improvement

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

10

CFS-LAGS for tighter container packing
• BASE baseline of 14 nodes based

on requested peak CPU load. No
CPU resource sharing, low CPU
utilisation (~30%) given ~800
containers from azure2021 (~60
cores)
• CFS used to statistically multiplex

containers onto 12 nodes. Max
density achievable given
requirement to keep CPU
utilisation below ~45%
• CFS-LAGS achieves the same

performance with 1 0 nodes and
higher CPU utilisation (~55%)

Cluster-wide latency
Given the same density
under CFS, the scheduling
overheads translates into
~6x increase in latency!

Cluster-wide CPU utilisation
CFS creates a significant gap between
effective and perceived utilisation:
+100%, ~120 cores for CFS
vs +10%, ~65 cores for CFS-LAGS

CFS-LAGS cluster (10 nodes)

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

11

Comparing CFS-LAGS to alternatives
• Simply increasing timeslice to

100ms increases cgroup-level task
completion and improves latency
but not for multi-threaded
workloads (resctl-parallel
and resctl-mixed)
• EEVDF is difficult to tune under

high load (120fn-EEVDF and
120fun-EEVDF-tuned) due
to the virtual deadline scheduling
used to enforce thread-level
fairness

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

12

• Cgroups are crucial to manage workloads in production but
– ...as load increases, reinsertion into the nested red-black tree structure

increases context-switch times
– ...which in turn increases the context-switch rate as CFS tries to achieve fairness
– ...and these two effects combine multiplicatively

• This increases latency variation dramatically while decreasing effective capacity
leading to poor bin-packing decisions by the K8s scheduler

– Appears to be mitigated currently by expensive, wasteful over-provisioning
– Even worse for serverless where desire to avoid cold-starts leads to artificially

increasing multiplexing by keeping idle tasks around

• CFS-LAGS unlocks 10—20% capacity by builds on CFS/EEVDF while using cgroups as
user-space control interface to encourage short tasks to complete early, keeping
runqueues shorter, reducing context switch overhead, and improving binpacking

Conclusions

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

13

● Currently
– Porting CFS-LAGS to latest 6.x kernels
– Extending to manage QoS for interactive, cgroup-

managed, multi-threaded workloads.
– Patch and benchmarks available via

https://github.com/isstaif/CFS-LLF_main
– Paper available via https://arxiv.org/pdf/2508.15703

● Several recent attempts to customise group
scheduling
– E.g., sched_ext cgroup sub-scheduling in v6.18 and

ScyllaDB’s user-space scheduler
– Exploring how far we can get using sched_ext (on

ARM…)

Status & Questions

https://edgeless-project.eu/
Funded in part by EU Horizon Europe under Grant Agreement No 101092950

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703
https://github.com/isstaif/CFS-LLF_main
https://arxiv.org/pdf/2508.15703
https://edgeless-project.eu/

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

14

Backup slides

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

15

CFS code paths

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

alamjad.isstaif@cl.cam.ac.uk, richard.mortier@cl.cam.ac.uk

https://arxiv.org/abs/2508.15703

16

CFS group scheduling data
structures

mailto:alamjad.isstaif@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk
https://arxiv.org/abs/2508.15703

	Unlocking extra cluster capacity with enhanced Linux cgroup sch
	Motivation
	Linux cgroup scheduling for serverless
	Microbenchmark for function colocation
	Quantifying CFS scheduling overheads
	Latency-Aware Group Scheduling (LAGS)
	Slide 7
	Realising CFS–LAGS
	Mitigating overhead with CFS-LAGS
	CFS-LAGS helps pack containers more tightly
	Comparing CFS-LAGS to other baselines
	Conclusions
	Slide 13
	Backup slides
	CFS code paths
	CFS group scheduling data structures

