
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000 2629

Implicit Admission Control
Richard Mortier, Student Member, IEEE, Ian Pratt, Christopher Clark, and Simon Crosby, Member, IEEE

Abstract—Internet protocols currently use packet-level mech-
anisms to detect and react to congestion. Although these controls
are essential to ensure fair sharing of the available resource be-
tween multiple flows, in some cases they are insufficient to ensure
overall network stability. We believe that it is also necessary to take
account of higher level concepts, such as connections, flows, and
sessions when controlling network congestion. This becomes of in-
creasing importance as more real-time traffic is carried on the In-
ternet, since this traffic is less elastic in nature than traditional web
traffic. We argue that, in order to achieve better utility of the net-
work as a whole, higher level congestion controls are required. By
way of example, we present a simple connection admission con-
trol (CAC) scheme which can significantly improve overall perfor-
mance.

This paper discusses our motivation for the use of admission con-
trol in the Internet, focusing specifically on control for TCP flows.
The technique is not TCP specific, and can be applied to any type of
flow in a modern IP infrastructure. Simulation results are used to
show that it can drastically improve the performance of TCP over
bottleneck links. We go on to describe an implementation of our
algorithm for a router running the Linux 2.2.9 operating system.
We show that by giving routers at bottlenecks the ability to intelli-
gently deny admission to TCP connections, the goodput of existing
connections can be significantly increased. Furthermore, the fair-
ness of the resource allocation achieved by TCP is improved.

Index Terms—Admission control, Internet, quality of service,
transmission control protocol (TCP).

I. INTRODUCTION

CONGESTION is widespread in today’s Internet. It causes
packet loss and excess delay, leading to retransmission

of data for reliable services, and degradation in quality for
real-time services. Due to the dynamic and bursty nature of
IP traffic, many schemes have been proposed for alleviating
network congestion. They have generally relied on end-system
based detection of, and reaction to, congestion solely at the
packet level. At the other extreme, traditional connection-orien-
tated networks, such as the public switched telephone network
(PSTN), in which each connection consumes unit resource,
and latterly asynchronous transfer mode (ATM) networks, in
which each connection’s resource requirement is specified
using a generalized traffic specification, implementconnection
admission control (CAC)in order to ensure that per-connection
performance requirements are met. CAC addresses congestion
at the connection level by requiring that each connection re-
quest admission to the network, allowing the network to decide

Manuscript received October 15, 1999; revised April 15, 2000. The work of
R. Mortier was supported by an EPSRC CASE award in collaboration with BT.

R. Mortier and I. Pratt are with the Systems Research Group, Cambridge Uni-
versity Computer Laboratory, New Museums Site, Cambridge CB2 3QG U.K.
(e-mail: richard.mortier@cl.cam.ac.uk; ian.pratt@cl.cam.ac.uk).

C. Clark and S. Crosby are with CPlane Inc., El Camino Real, Los Altos, CA
94022 USA (e-mail: christopher@cplane.com; simon@cplane.com).

Publisher Item Identifier S 0733-8716(00)09232-5.

to acceptor reject it. In this way the network can guarantee
performance per connection.

Current Internet traffic consists largely of transmission con-
trol protocol (TCP) flows, which are of a connection-orientated
nature, and elastic in their resource requirements. That is, TCP
flows can operate under a variety of network conditions, and in
particular, can perform useful work at a variety of bandwidths.
However, streaming multimedia flows are becoming more
prevelant, a prime example being the real time protocol (RTP)
[1] which typically uses the user datagram protocol (UDP)
for transport. Although these protocols are often not explicitly
connection-orientated in nature at the transport layer, they may
be considered so at a higher, session layer. They are usually
much more inelastic in their resource requirements than proto-
cols such as TCP—they have a narrower bandwidth operating
region, requiring a minimal level of service to perform useful
work. Both these types of flow may be considered single
network transactions requiring a minimal resource in order
for adequate user utility to be achieved. For example, most
interactive uses of the Internet, such as downloading a web
page, require a latency bound corresponding to a minimum
useful bandwidth. If this bandwidth is not delivered, the latency
bound will not be met, and the user is likely to either give up,
or attempt to restart the download. It is only feasible to provide
minimal guarantees of flow-level performance if the network
performs admission control of some type, not solely at the level
of individual packets. In this paper we deal with the application
of admission control specifically to TCP flows, the case where
one might expect least benefit. We believe that the technique
of implicit admission control is applicable to other types of
traffic, and are attempting to address this and the more general
session-level admission control problem in ongoing work.

A. The Transmission Control Protocol

TCP is designed to provide flow-control and reliable trans-
mission on top of the connectionless, unreliable Internet pro-
tocol (IP). Congestion occurs due to contention for limited net-
work resources, typically buffer space or transmit bandwidth. If
it is not detected and prevented, thencongestion collapsemay
occur; this is where the network, or some subset of the net-
work, is loaded to such a level thatgoodput—the throughput
of data, disregarding retransmissions—falls to negligible levels.
Following the rapid increase in the use of TCP and enormous
changes in the topology and size of the Internet, a succession of
congestion controlmechanisms have been proposed and imple-
mented in TCP.

These began with Jacobson’s “slow start” and “congestion
avoidance” schemes [2], and include the TCP varieties known
as Tahoe, Reno, SACK, and Vegas [3], [4]. Most are based on
the idea that when the TCP sender notices congestion, it will

0733–8716/00$10.00 © 2000 IEEE

2630 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

multiplicatively decrease its transmission rate (back off). Con-
gestion is traditionally detected through loss of a packet, but al-
ternatives where packets are merely marked according to a va-
riety of policies are under consideration [5], [6]. Subsequently,
the connection will linearly increase its transmission rate, until
another loss event is detected. This gives TCP its characteristic
sawtooth transmission pattern, as it probes for bandwidth, expe-
riences loss, backs off, and repeats the cycle.

Although these methods have largely been successful in the
past, it is still the case that in the current Internet a TCP flow
may observe near-zero goodput when a large number of TCP
flows share a bottleneck link. The consequent competition for
resources results in catastrophic collapse of the per-flow perfor-
mance, even though the link is operating at full utilization. Each
TCP flow probes for available bandwidth to see if it may in-
crease the amount of data it has “in-flight” in the network. Cur-
rent implementations of TCP have a minimum probe bandwidth
of one segment per round-trip time (RTT), or one segment per
retransmission timeout (RTO) if the probe packet is discarded.
If too many TCP connections are admitted, the total probe band-
width can itself exceed the capacity of the bottleneck link, re-
sulting in a substantial increase in retransmitted data and there-
fore wasted bandwidth, and woefully inadequate performance
per flow. Given the inability of current TCP implementations
to back off further, the congestion control problem at this point
has become network-centric, rather than host-centric, and so it
requires appropriate network controls.

This state of congestion collapse has frequently been ob-
served on the U.K.–U.S. SuperJANET transatlantic link. This
link is a major bottleneck for traffic flowing from the U.S. to
British universities, and has historically been gravely under-
resourced relative to peak demand. Given the introduction of
usage-based charging on this link1 —and such measures show
every indication of becoming more, not less, widespread—en-
suring reasonable goodput in such cases has become important
in order to limit the total cost of bandwidth used. Frustration
experienced while trying to use this link during peak times
provided the main motivation for undertaking this work.

Even if this somewhat extreme scenario does not occur,
there is often a minimum TCP bandwidth required to achieve a
minimal session-level user utility. For example, web users who
have to wait too long for all of the objects within a web page to
complete downloading may give up and hit “stop,” or worse,
“restart” the download. This wastes already scarce network
resources, reducing the number of “successfully completed”
TCP connections, which in turn decreases the number of
successfully downloaded pages—their connection level and
session level goodput, respectively. When a user causes a flow
to be aborted due to poor performance, bandwidth has effec-
tively been wasted at the very time it was most scarce, since the
data already transferred is of little or no use, and restarting the
flow will usually require that this data be retransmitted.

Furthermore, it is known that TCP does not share the available
bandwidth fairly under high load consisting of many flows [7].

Thus, as Massoulié and Roberts [8] and Kumaret al.[9] argue
in more detail, it makes sense to allow Internet service providers

1Currently £0.02 ($0.032) per megabyte for U.K.-bound traffic.

(ISPs) to control the admission of traffic at a variety of levels
and not just at the packet level. This should help to temper con-
gestion, and ensure that bottlenecks never become so heavily
overloaded that real-time services and interactive applications
over TCP can make no useful progress.

B. Contribution

In this paper we consider only connection-level admission,
as opposed to session or flow-level admission, and focus our at-
tention on the most prevalent current protocol—TCP. In future
work we intend to address other protocols, such as RTP and Re-
alAudio, and to extend our scheme to take session-level seman-
tics into account. For example, persistent HTTP connections,
as in HTTP/1.1, reduce the semantic gap between session- and
flow-level admission control, and the effects of this should be
further investigated.

We first introduce admission control and its application to
the Internet in Section II, along with a brief discussion of how
we measure success. Section III discusses the details of our ap-
proach and the implementation of admission control for TCP.
Our initial investigation was carried out using simulations over
a simple dumbbell topology with a single bottleneck link; these
are described and discussed in Section IV. We then validated
our method using a test-bed implementation, described in Sec-
tion V, and carried out further simulations of particular inter-
esting cases. We summarize and conclude with a brief discus-
sion of future work in Section VI.

II. A DMISSION CONTROL

Any admission control function requires knowledge of both
the state of the network and the potential impact on existing
flows of the admission of another flow. Using this information
it is possible to decide whether or not a new flow should be
admitted to a link of limited resource. Admission control must
be performed by thenetwork, since the network cannot rely on
cooperative behavior of the sources in competition for the re-
source, even when the protocol does so, as in TCP. In traditional
networks using CAC, the source explicitly signals the network
to request access. TCP has no such explicit network-signaling
procedure, and it is therefore necessary to perform admission
control by having the network examine traffic and identify new
flows as they commence.

Access to the network is only part of the problem. The net-
work must also ensure that resources are available to carry the ac-
cepted traffic. CAC in conventional telephony systems is simpli-
fied by the fact that connections require unit resource and are es-
tablished end-to-end. This makes it easy for the network to know
if it may accept a connection, since it is of a known, constant
bandwidth, with a route determined at connection setup time.
Any switch on the route may reject a connection during the con-
nection setup phase. Typical ATM signaling methods [10] use a
similar end-to-end system, but require that the connection should
declare certain parameters, such as the peak and sustained rates,
in order that resources may be reserved at connection setup.

An alternative solution to requiring the connection to explic-
itly declare its traffic parameters is to usemeasurement based

MORTIER et al.: IMPLICIT ADMISSION CONTROL 2631

admission control (MBAC), in which the network measures its
current load [11], [12]. It then uses these measurements to make
a decision about whether it should accept a new connection. This
approach has the advantage that it relaxes the requirement that
the application knowa priori the statistical details of the traffic
it will send. In many cases these parameters cannot be known in
advance because the content of the connection may be dynam-
ically generated (e.g., by a compression algorithm) and more-
over the packet flow may be modified en route to the bottleneck
due to buffering at intermediate routers. Obviating the need for
applications to parameterize themselves is clearly desirable in a
fast-moving environment like the Internet, where new applica-
tions are developed and deployed frequently. In addition, since
the Internet is a public access network which currently has poor
support for network charging or policing, it is unlikely that the
network would be able to trust traffic parameters declared by
users.

A. Admission Control in the Internet

The problem with applying admission control to the Internet
is that the Internet is based on a connectionless packet-for-
warding protocol, IP. In general, it is not possible to know in
advance the route that any one packet will follow between
source and destination. Indeed, the packets constituting a flow
may well take different routes during the lifetime of a flow,
and there is consequently no way to reserve bandwidth for a
flow in advance. Although RSVP [13] has been proposed as
a candidate soft-state signaling protocol for enabling this, it
has yet to be widely accepted. Even if route-pinning is used,
the pinning may only apply to a subset of the total number of
packets comprising a flow.

In spite of the Internet’s underlying connectionless for-
warding mechanism, most communication between Internet
hosts is actually connection-orientated, using higher level pro-
tocols such as TCP. By delving inside IP datagrams to decode
the higher level protocol information, routers can identify indi-
vidual connections. This can be done using modern software or
hardware-based packet filtering mechanisms, which allow the
identification of particular types of packets, such as TCPSYN
packets, that are attempting to establish new connections.2

An admission control algorithm applying such implicit iden-
tification of new flows can selectively cause the deferral or re-
jection of connection setup attempts by reacting to the connec-
tion setup process. The decision as to whether to intervene in the
creation of a new connection can be driven by an MBAC process
which monitors the level of congestion at the router, enabling
severe overload conditions to be avoided. Since this scheme op-
erates without cooperation from end-systems, and without mod-
ification to the network as a whole, we term itimplicit admission
control.

Note that an implicit admission control scheme does not re-
quire per-flow state to operate successfully. Admission control
decisions are based on the estimated resources remaining on the
link at the point at which the connection request is intercepted.

2We note that the use of IPsec would prevent this style of connection detec-
tion; should IPsec become widespread, alternative methods of connection de-
tection and rejection would be required.

We assume that data packets belonging to a given flow will gen-
erally follow the same route as its connection setup packet. In
particular, one obvious place for deployment of our system is
at the users’ ingress to the network, where there is no alterna-
tive route. This is not an absolute requirement, however, since
our load estimate is calculated in real time and based solely on
measurements of the traffic. This means that such routers will
still perform satisfactorily even when they only see one direc-
tion of a flow, or when a flow is rerouted through or around a
link in midstream.

B. Measuring Success

We measure performance by the goodput of a connection, as
previously defined. We attempt to achieve high per-connection
goodput by limiting the number of connections active on the
bottleneck link at any time. With no admission control, overall
goodput may remain high since each successfullyACKed packet
contributes to the system’s goodput, but a given flow’s goodput
may become unacceptably low. This is a consequence of the
high number of retransmissions it must make to get each packet
through, and the corresponding substantial increase in wasted
bandwidth and the flow’s duration.

Even so, we still wish to admit a “useful” number of connec-
tions as it is clearly not satisfactory to be overly conservative
in the number of connections admitted. We also wish to ensure
that the flows themselves can complete in a reasonable time. For
many application-layer protocols running over TCP, it is often
the case that received data are not useful until all the data have
been received and the flow has completed.

In addition, a good admission control algorithm should not be
unfair to any particular type of connection. For example, con-
nections with high RTTs should not be penalized in comparison
to those with lower RTTs.3 Furthermore, a practical admission
control algorithm must be efficient in terms of its measurement,
computation, and state requirements, and should be capable of
dealing with a potentially large number of connections.

In summary, adding admission control to a link should not in-
terfere with the link when it is not overloaded; should not overly
limit the utilization or number of flows allowed into the link; and
should not be biased against a particular type of flow. It should
increase the utility users receive from the network by ensuring
that the goodput of the system is accurately reflected by each
flow.

III. I MPLEMENTATION OF ADMISSION CONTROL IN THE

INTERNET

Our approach is to perform admission control at layers above
IP that have a well-defined notion of a connection. Although we
address only TCP admission control in this paper, we believe
this approach is feasible for other connection-orientated proto-
cols running over IP. Rather than require that TCP be changed,
we modify a few specific routers at well-known bottleneck links,
thus avoiding the problems in requiring widespread deployment
of new technology.

3TCP itself does penalize such connections, but we would hope that an ad-
mission control algorithm would not increase this unfairness.

2632 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

By capturing TCPSYNor SYN/ACKpackets, it is possible to
efficiently intercept connection setup requests. New flows can
then be accepted, by allowing the packet to proceed as normal,
or rejected by suitable means. We discuss methods of connec-
tion rejection in Section V-B. We do not deal with the resource
allocation problem, leaving that to the protocol, TCP, to per-
form. This allows our scheme to work without modification to
the TCP protocol, so once a connection is accepted, the band-
width achieved is dependent on the TCP implementation. This
is similar to the philosophy of the UNITE protocol for IP on
ATM [14], “separating connectivity from QoS control.”

In summary, our algorithm is very simple.

• The load estimator places the admission controller in one
of two states:accepting or rejecting .

• On detection of a new connection attempt:
if the controller is in theaccepting state, theSYN
or SYN/ACKpacket is allowed to proceed without in-
terference down the bottleneck link;
if the controller is in therejecting state, then
the connection attempt represented by theSYN or
SYN/ACKis rejected or deferred.

A. The Admission Control Decision

Whether the admission controller is in the accepting or re-
jecting state can be based on a variety of information. Perhaps
the most obvious basis for the admission decision would be
to limit the number of connections passing through the router.
However, due to the asymmetric nature of much Internet traffic
[15], the bottleneck router carrying the bulk of the traffic may
not see all the control packets associated with a flow (“asym-
metry of routing”), and may only be overloaded in one direc-
tion (“asymmetry of load”). Consequently, any scheme based
on counting connections would be obliged to continually infer
the active connections traversing it, for example, by applying
filters either to a sample or to all packet headers and keeping
state on thesource address, source port, destination address,
destination port tuples associated with packets. This requires
that per-connection state be kept, which might only be consid-
ered scalable at the network edge. In addition, due to asym-
metry of routing, a method to expire flows considered inactive
is required. The existence of routers capable of implementing
weighted fair queueing for large (approximately 64 000) num-
bers of flows suggests that it might be possible, however.

Rather than explicitly counting the number of flows
traversing a node, one might estimate the number of flows.
For instance, there are models [16], [17] of TCP steady-state
behavior, giving throughput estimates in terms of RTT and
packet drop-probability. Such models might enable one to
simply relate the drop statistics at a router to a number of
flows, giving an estimate of the number of flows traversing
the router. Another approach is to use the evolution of the
queue length over time and the fact that TCP has well-known
behavior to estimate the number of flows. This is obviously
complicated by the variation in RTTs in the Internet, and by
the difference in behavior between TCP in slow-start and TCP
in congestion-avoidance. In the current implementation we
have followed a different approach, and use a particular on-line

effective bandwidth estimator to inform the admission control
decision, with a threshold chosen by the operator. Kumaret al.
[9] take a similar approach, but use a measure of the expected
per-session bandwidth share (“normalized offered load”) and
relate this to queue occupancy. Again, the operator then chooses
a threshold that will give users the desired minimum level of
service.

B. Algorithm Implementation

The current implementation uses on-line measurements
based on aggregate load to move the controller between the
accepting and rejecting states. It retains no per-con-
nection state, and is therefore oblivious to the termination of
flows. In this initial implementation of the proposed scheme,
we chose to use an effective bandwidth [18] estimator from the
Mtk toolkit, developed by Glasgow University Computer Sci-
ence Department, as part of the Measure project [19]–[21], in
conjunction with Cambridge University Computer Laboratory
and the Dublin Institute for Advanced Studies.

This estimator uses simple measurements of the arrivals
process to a queue to estimate the entropy of the traffic.
Combining this estimate with two constraints, the maximum
queue size in the router and a target overflow probability of
the buffer, the estimator computes the effective bandwidth re-
quirement of the aggregate traffic mix. The effective bandwidth
can then simply be subtracted from the total capacity of the
bottleneck link to yield the remaining resource in the system.
Alternatively, given the total transmission capacity, the arrivals
process and the buffer size,Mtk can be used to determine
when the admission of a new flow is likely to cause the target
overflow probability to be violated. The Appendix provides a
brief introduction to the mathematics underlying the estimation
procedure used byMtk .

Those connections that are accepted onto the link compete
with each other in the usual way, relying on the TCP flow
and congestion control algorithms to achieve fair allocation of
the available bandwidth. Each TCP connection is limited in
its transmission rate by the lowest capacity link on its path.
Consequently, all connections that are not limited by receiver
window will experience packet discard. As a result it makes
no sense to attempt to limit the probability of packet discard
to zero. Nonetheless, in a properly dimensioned network, the
packet discard probability should not become excessively high.
The threshold target value is up to the operator to set: lower
means connections will see a higher quality, more exclusive
network; higher means connections will see a lower quality,
more accessible network. For this estimator we would ideally
use a target overflow probability which would achieve, for
each of active connections, a loss rate equal to the minimum
loss rate required by TCP in order to correctly establish the
available rate at the bottleneck link. The results below contain
a wide range of target loss rates, to show the system response
under various loads. The exact parameterization of the system
will depend on the estimator in use, and on the service that the
network operator wishes to provide.

We would stress that our approach does not rely on this par-
ticular estimator, and indeed we would not claim that this es-
timator is especially suited for the task at hand; ongoing work

MORTIER et al.: IMPLICIT ADMISSION CONTROL 2633

Fig. 1. Simulator topologies used. The left-hand figure shows the identical link delay topology, and the right-hand figure shows the differing link delay topology.
Admission control is applied at the “in” node.

Fig. 2. Graphs of offered load, drops, and retransmissions, without admission control and with an admission threshold of 0.1. The topologies are shown in Fig. 1,
with the left-hand graph for the left-hand topology and the right-hand graph for the right-hand topology, both using the simple traffic model.

is attempting to identify more appropriate algorithms for this
traffic. We believe that the general approach of implicit admis-
sion control is robust to the choice of estimator. We hope that
this is supported by the success of our results using theMtk es-
timator in situations quite outside its design remit.

IV. SIMULATIONS

We usedNS(Network Simulator v2) developed by the VINT
project at Lawrence Berkeley Laboratories [22] to obtain perfor-
mance results for our proposed system.NS is a discrete event
simulator designed for the simulation of Internet protocols. It
contains code to simulate a large number of TCP implementa-
tions, in addition to standard network elements, such as sim-
plex- and duplex-links, and routers with different queueing dis-
ciplines, principallyDropTail and RED. By linking NS with
Mtk , we were able to test the efficacy of our proposed admis-
sion control scheme.

When a connection starts in a simulation, the node at the
ingress to the bottleneck link considers its current drop-prob-
ability estimate in relation to the threshold set by the operator.
This allows it toaccept or reject the connection, based
on whether the estimate is lower or higher than the threshold
set by the operator. Section V-B describes approaches used to
deny admission to connection attempts in our test-bed network.
SinceMtk only utilizes measurements of aggregate arrivals in
this implementation, the overhead of the estimation process in
the router is not as high as might first appear. TheMtk estimator
performs computation periodically, and not based on traffic ar-

rivals, so we believe that a denial-of-service attack by over-
loading the node withSYNpackets should not be possible.

A. Network Model

We used two topologies, shown in Fig. 1: one is a simple
dumbbell topology with constant delay links; the other is
similar, but with links of varying delay to simulate flows with
differing RTTs. We hope to address more complex topologies
in followup work, including multiple bottlenecks and situa-
tions where cross-traffic, both responsive and unresponsive,
interferes with flows through the bottlenecks. We also used two
basic traffic models: one a simple model with fixed packet size
and 1 MB flow length purposely chosen to overload the link,
and with interflow arrival intervals drawn from an exponential
distribution with mean 1 s, and the other a more complex model
with varying flow lengths, constructed from data obtained
by analyzing web-cache logs from a variety of sources. We
added adrop-tail-mtk node type toNS, an extension
of its drop-tail node. This implemented the admission
control algorithm, and collected the per-flow trace information
necessary to produce the tables and graphs in the following
section.

B. Simple Traffic Model

The first set of results are shown for the simple traffic model
in Fig. 2 with the left-hand graph showing the results for the
simple, identical link topology, and the right-hand the results
for the differing link topology. For the first case, we see that
without admission control, the offered load is approximately

2634 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

Fig. 3. These graphs show histograms of flow durations, where the frequency count has been made over buckets of 2 s, and normalized to the total number of
flows to complete. Thex axis is the duration, and they axis the normalized frequency. The topologies used are shown in Fig. 1, with the left-hand graph for the
left-hand topology and the right-hand graph for the right-hand topology. Both graphs are for the simple traffic model. Note that thex axis has been truncated for
clarity; due to the “no admission control” case, it actually extends to 894 s.

Fig. 4. Tables showing the number of flows completed, packets transferred by completed flows, the total number of packets retransmitted, and the duration means
and standard deviations for the completed flows. The simulations were run for 900 s. using the topologies shown in Fig. 1 and the simple traffic model. The upper
table is for the left-hand topology and the lower table for the right-hand topology.

30% higher than the link capacity, leading to approximately
30% of the traffic on the link being retransmissions, due to the
large volume of packets being discarded. Conversely, when ad-
mission control is turned on, the offered load is kept slightly
below the link’s capacity, ensuring that drops and consequent
retransmissions are tightly constrained. For the second case, we
see results that do not differ significantly from those in the first.
We also simulated this topology using a variety of packet sizes,
and found that this had similarly negligible effect.

Based on these results, we also show histograms of the
time to successful completion for flows in Fig. 3, and tables
of their mean and standard deviation in Fig. 4. These clearly
demonstrate that employing admission control can greatly
increase the number of flows that successfully complete in a
given time interval by allowing flows to complete substantially
faster. Without admission control, most flows do not complete,
and those that do have a mean of 509 s and a standard deviation
of approximately half the mean. Conversely, completion times
when admission control is applied as leniently as the current
estimator allows have a mean of 135 s, and a correspondingly
lower standard deviation, with nearly 20 times more flows
completing.

Since TCP is “greedy,” that is, admitted flows will attempt to
use the available bandwidth in the bottleneck, the link remains

at near-full utilization even with admission control in place.
This is shown by the results in Fig. 2. In conjunction with those
results, the results shown in Figs. 3 and 4 demonstrate that many
applications will achieve higher utility when admission control
is applied. Users may be prepared to wait for 1 min for a large
download to complete; they are less likely to be prepared to
wait for 15 min. The results also show that it is possible, even
with the Mtk estimator which is not optimized for this type
of traffic, for the network operator to tune the network based
on users applications’ requirements, in order that they receive
higher utility.

C. Complex Traffic Model

We now consider the results for the web-log-based complex
traffic model. As can be seen in Fig. 5, admission control has a
similar effect as with the simple traffic model: the offered load is
kept at or slightly below the link capacity when admission con-
trol is applied, but continues to rise when no admission control
is in place. The drops and retransmissions also exhibit similar
behavior to the results for the simple traffic model. However,
the flow duration histogram in Fig. 5 and the table of the mean
and standard deviations in Fig. 6 show that fewer flows com-
plete successfully with admission control in place.

MORTIER et al.: IMPLICIT ADMISSION CONTROL 2635

Fig. 5. The left-hand graph shows offered load, drops, and retransmissions, without admission control and with an admission threshold on the target loss probability
of 0.1. The right-hand histogram is of flow durations, where the frequency count has been made over buckets of 2 s, and normalized to the total number of flows
to complete. Thex axis is the duration, and they axis the normalized frequency. Both used the left-hand topology in Fig. 1, with the complex traffic model.

Fig. 6. Table showing the number of flows completed, packets transferred by completed flows, the total number of packets retransmitted, and the duration mean
and standard deviations for the completed flows. The simulations were run for 900 s, using the complex web-cache log based traffic model. The topologyused was
the left-hand topology in Fig. 1.

Fig. 7. Table showing the number of completed flows with the number that met a target of 10 packets per second over their lifetime (“good” flows), and the
number that failed to meet this target (“bad” flows). Only flows that started after the first 100 s had passed are counted, in order to remove initial transient behavior.

The table in Fig. 6 clearly shows that flows are completing
faster and with more tightly controlled durations when admis-
sion control is applied. However, fewer flows complete success-
fully which appears discouraging. Examination of the number of
packets received reveals an explanation. When admission con-
trol is applied, approximately the same number of packets are
successfully received, suggesting that link utilization remains
the same. Without admission control, the proportion of retrans-
missions, for the longer flows in particular, rises as the existing
longer flows lose out to the shorter flows in slow start. When
admission control is applied, the longer flows are able to com-
plete since the excess short flows are unable to enter the link and
cause the long flows to experience excessive loss.

Examining the table in Fig. 7 provides further insight. Set-
ting a target of 10 packets per second per flow as a measure
of “useful” goodput, we see that application of admission con-
trol nearly doubles the number of “good” flows that complete.
This suggests that a large number of the extra flows that manage
to complete with no admission control are receiving very low
transfer rates, and are hence of less use. This table also sug-
gests a manner in which the operator could set the threshold.
One might choose a target throughput and then adjust the ad-

mission threshold to achieve it—the particular value depending
on the traffic mix and on the level of service the operator wishes
to provide for its customers.Mtk appears to give a reasonable
range of values for the operator to tune to, which is encour-
aging given that the link is only experiencing overload of ap-
proximately 20%. Better estimators might give one a more con-
trollable parameter with greater dynamic range—a weakness of
Mtk in these circumstances is that its maximum threshold is 1.0,
which leaves quite a large gap in system behavior between no
admission control and admission control at its most lenient.

V. IMPLEMENTATION

The purpose of the implementation was to allow us to validate
the simulations, and to test interaction with applications and pro-
tocol implementations. The implementation used standard Pen-
tium III PCs running the Linux 2.2.9 operating system for both
the sources and sinks, and the admission control router. The net-
work was 100 Mb/s switched Ethernet, and all machines used
3Com 3c509 NICs. The router software consisted of the Linux
2.2.9 kernel compiled with support for IP forwarding, and for
the QoS/Fair queueing options. The router was configured using

2636 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

Fig. 8. Measurements of packet retransmission intervals for some TCP implementations followingSYNand data loss.x; y means that packetp was retransmitted
y seconds after packetp . x � n means thatn packets were retransmitted at intervals ofx seconds.

the Linux traffic control engine [23], for which a module was
written to enable queue measurements to be made and passed to
the estimator.

A. Performance Tests

The baseline performance of the Linux forwarding code was
measured by performing a “flood ping” between the two hosts
that were connected by the router. Even using small packets,
Linux is able to forward at the 100 Mb/s line rate without CPU
usage exceeding 20%.4 Installing the instrumented queueing
module and theMtk estimator made no difference to the router’s
CPU usage. Our experience suggests that significant amounts of
CPU time are available, enabling us to consider more complex
bandwidth estimation functions in the future.

In order to test the admission control algorithm, traffic was
generated usingpttcp , a locally developed utility, based on
ttcp [24]. pttcp allowed us to set up large numbers of con-
nections between the hosts, in either a transmit–receive mode,
or in a client–server mode, to more accurately reflect web traffic
(i.e., the client sets up a connection and requestsbytes from
the server, which then transmitsbytes to the client).

The admission control process was implemented using the
Linux IPChains [25] software, which allows user-space pro-
grams to be passed packets of interest for examination, and cor-
responding responses to be generated and transmitted. This was
modified to allow more flexibility in specifying packets of in-
terest. The IPChains software intercepted packets with header
bits of interest and passed them to the handler in the user code
for the admission decision to be made. Analysis of the results
was performed using John Ostermann’stcptrace [26] along
with further postprocessing.

B. Connection Admission and Rejection

The best way to implement the detection of connection ad-
mission requests and the rejection of connections is dependent
on a number of factors, including the traffic characteristics in the

4The routing table used in this experiment contained only two entries. Some
degradation in performance may occur with significantly larger tables.

network, the underlying link technology, the longevity of con-
gestion at the link, and the protocols in use. Our implementation
allows any combination of the TCP option bits to be treated as
of interest; typically one would treatSYNor SYN/ACKpackets
as connection requests. To signal rejection, we tested both drop-
ping the admission request, and sending anRSTto both parties.

We believe that a practical implementation would need to
allow all the above possibilities. For example, consider a web
server being accessed by a client which experiences asymmetric
routing to/from the server. The bottleneck link might never see
the SYN, in which case theSYN/ACKmust be used. Dropping
the request naturally reduces the retry rate as TCP backs off, but
means that the web user sees no response, and may well retry
more quickly. Sending theRSTallows the web user to notice
that the server cannot be accessed, presenting them the option
of cancelling the session. In cases where it is detected that the
connection is not being used to transfer Web traffic, there may
well be other more appropriate options.

In the case where theSYN/ACK is intercepted, the sending
of the RST might itself be considered harmful as it will use
resource at the times when it is most scarce. One might prefer
to simply drop theSYN/ACK, or indeed theSYN, leaving TCPs
normal operation to deal with the retries and possible eventual
denial. This has the advantage that traffic is not injected into
the link at times of high load, but does mean that the user may
experience large timeout delays before being informed that the
connection cannot be made at this time.

The relevant RFC [27] states that the backoff sequence when
a SYN is dropped should be exponential as for normal traffic
loss, butmustlast for at least 3 min instead of 100 s, the recom-
mended value for data traffic. This would ensure that retrans-
mittedSYNpackets do not themselves overload the link. Fig. 8
is the result of measuring the RTO intervals for a number of TCP
implementations, and shows this to be the case. The decision to
retry may also be taken by the application or user, rather than
the protocol.

Other suggested methods of denying admission to a con-
nection include using ICMPSource Quench and ICMP

MORTIER et al.: IMPLICIT ADMISSION CONTROL 2637

Reject: Unknown Protocol messages [9]. The former
has the advantage that it also allows the operator to control the
throughput of active connections as it reduces the receiver’s
congestion window to one. The latter has the disadvantage that
in addition to denying the requesting flow access, it can also
cause existing flows between the same endpoints to break.

Perhaps the most important thing to note from this table is that
all the implementations examined do use an exponential backoff
sequence forSYNretries, so deferral of a connection should not
result in excessive control traffic being generated. In addition,
theSYNbackoff sequence for all the implementations studied is
quite reasonable, albeit not completely RFC compliant, with at
least 4 retries occurring over at least 20 s. Consequently, TCP
can be relied on to retry later if a CAC-capable router chooses
to defer or reject a connection. Another notable point is that
some TCP implementations are not very robust to midstream
loss. For example, Windows 98 gives up in under 10 s after
losing just 6 packets. Application of admission control as we
propose should make such loss sequences less likely, and hence
reduce the number of broken connections.

C. Impact on Applications

In addition to using the implementation to gain some real-life
confidence in our method, we also used it to test the behavior of
some popular Internet applications when denied admission by a
RST. Since the Web is currently the most popular use of the In-
ternet, we tried Netscape v4.5 on both Linux 2.2.9 and Microsoft
Windows NT, and Internet Explorer v4 on Microsoft Windows
NT. In all these situations, we found that when a TCP connec-
tion is rejected by our admission controller the application will
silently accept that it could not retrieve an object on the page
unless it is the base page itself, in which case a dialog box is
popped up informing the user that the page cannot be retrieved.
Further, it appears that Netscape has a timeout of approximately
30 s before it gives up on TCP retry attempts, whereas Internet
Explorer attempts to connect 4 times for a given source port,
and then repeats this for a further 4 different source ports, incre-
menting the source port by one each time.

VI. SUMMARY

We have argued for the use of admission control at routers
in the Internet as a mechanism which we believe has the poten-
tial to improve the performance experienced by users of both
inelastic real-time services, and elastic data services, such as
TCP. We have focused specifically on the admission control of
TCP flows, and have shown that, under certain circumstances,
TCP performance can collapse due to overadmission of flows to
congested bottleneck links. Under these circumstances, as the
number of admitted flows grows in an unbounded fashion, the
corresponding throughput experienced by each flow falls to an
operating region in which TCP is neither stable, fair, nor useful
from the application and user points of view.

We have shown by way of simulation that the implementation
of a simple admission control scheme at routers in the Internet
can dramatically improve the performance experienced by all
users. Although it is true that our controller will reject some
flows, in the unconstrained network those flows may only

receive a share of the bottleneck link bandwidth likely to be too
small for interactive use, and so their performance is almost
unchanged. For those flows that are admitted, performance,
whether measured by the per flow goodput or the completion
time for transfer of data for an elastic flow, is dramatically im-
proved. Our scheme also increases the fairness of the resource
allocation between those TCP connections that have been
admitted. Furthermore, it need not be deployed throughout
the Internet for the benefit to be seen; deployment at a limited
number of known bottlenecks should have a noticeably positive
effect. A beneficial side effect of limiting the number of flows
traversing a bottleneck link is that we also greatly reduce
the bandwidth wasted by retransmissions upstream of the
bottleneck, freeing this resource for use by other flows for
which these upstream routers may be bottlenecks.

Our admission controller is simple and efficient, requiring
little per-packet processing and no per-flow state. We believe
that using a measurement based admission control scheme con-
fers significant advantages: the scheme is robust to fluctuations
in the offered load, requires noa priori per-flow traffic charac-
terization—generally impossible to derive—and bases its esti-
mations on measurements of the aggregate load. Finally, using
theMtk estimator, the network operator can tune the admission
threshold, giving greater control over the service quality expe-
rienced by users’ traffic in the network.

We have implemented our controller on PCs running Linux,
and confirmed that the processing overhead of the scheme is
minimal. Our experiments allowed us to examine the behavior
of popular Internet applications in the face of admission con-
trol; we found that all applications tested were robust to the
failure of their connection setup attempts. In addition, we tested
a number of TCP implementations and found that their state-ma-
chines were robust in the face ofSYNs andSYN/ACKs being
reset, and that they also implemented reasonable backoff strate-
gies for both dropped data and dropped control traffic.

Future Work

Our investigation of admission control in the Internet is on-
going. We are continuing work on instrumenting our imple-
mentation, measuring its performance under a variety of loads,
and will further validate application behavior when admission
is denied. As discussed, we are also researching additional al-
gorithms and MBAC estimators, of which a variety have been
published in the literature, and the need to address the specifica-
tion of admission thresholds by network operators. Robustness
in the face of the highly correlated TCP traffic process, and the
highly variable topology of the Internet is important. We are also
developing and testing both implicit and explicit admission con-
trols for other Internet protocols. We believe that our results to
date are promising and indicate the potential of this approach.

APPENDIX

LARGE DEVIATIONS’ THEORY

The theory of large deviations [28] is based around the obser-
vation that as more data points are taken from a distribution, one
expects that the ratio of “rare events”—those events that give
the distribution its tail—to other events should decay exponen-

2638 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

tially. That is,the tail of the distribution decays exponentially. In
a sense it is the flip side of the central limit theorem (CLT): the
CLT governs random fluctuations near the mean, of the order of

, where is the number of statistics, and is the vari-
ance; deviations of the order ofare much larger (“large devia-
tions”) and occur only rarely. It is these events that are governed
by large deviations’ theory. More formally, Cramér’s theorem
states the following.

Let be a sequence of bounded, independent
and identically distributed random variables, each with mean
and let

denote the empirical mean; then the tails of the probability dis-
tribution of decay exponentially, with increasingat a rate
given by a convex rate-function :

for

More generally, the conditions required for large devia-
tions’ theory to be successfully applied can be relaxed to

being bounded, weakly dependent, and
stationary: the result that the tails of the distribution will decay
exponentially still holds.

When one applies this result to queueing theory, one finds
that for a single-server queue, the queue-length distribution has
asymptotics of the form

where , the decay-rate, can be calculated from the rate-function
of the arrival process via

where is the service rate. More simply, if one can measure,
then may be calculated for any value of, which is known.
Given one can estimate packet-loss and packet-delay.

In general, one will not know the rate-function precisely.
However, it turns out that may be estimated from a quantity
known as thescaled cumulant generating function (sCGF)of
the arriving work. An analogy is often made between this and
the “entropy” of the arriving work. The sCGF is defined as

which can be shown to be the Legendre transform of , and
so

Thus, if one measures the sCGF of the arriving work, one can
calculate the decay rate of the function giving the probability
of a packet being dropped, i.e., thedrop-probability. Given this
decay rate, one may calculate how big the buffer should be to en-
sure the drop-probability stays bounded above by some amount.

Estimating the sCGF

The crux of the matter is the estimation of the sCGF; if this is
accurate, then the resultant calculations should be accurate (in
the long term). Moreover, for this to be a feasible method for
MBAC, the process must be cheap enough to perform on-line.
There has been a great deal of investigation into the estimation
of the sCGF recently, as it has application to the area of effective
bandwidth [18], and so to charging for Internet traffic. As part of
the measure project, a number of estimators for the sCGF have
been developed. These estimators have been applied to ATM
networks, and to the problem of resource allocation in operating
systems, specifically theNemesis operating system [29].

Given that the arrivals, are weakly dependent, we can ap-
proximate the sCGF by a finite timecumulant generating func-
tion (CGF). Letting be a random variable representing the
number of packets arriving at the queue in an interval of length
, the sCGF of the arrivals process is approximated

as

for the block size, , sufficiently large. Since is related to ,
estimation of the expectation can then be performed by breaking
data into blocks of length and averaging over them:

where the are the block sums ,
, etc.

Then the asymptotic decay-rate of the queue-length distribu-
tion can be obtained, given the service rate,, via

There are other ways of estimating the sCGF—for example,
using a varying block size rather than a fixed value as above.

ACKNOWLEDGMENT

The authors wish to acknowledge the authors of the various
pieces of software used in this work, and J. Crowcroft, A. Don-
nelly, S. Hand, T. Harris, and P. Jardetzky for interesting discus-
sions and suggestions. They would also like to thank the anony-
mous reviewers and the editors for their helpful comments.

pttcp and the IPChains code will be made available from
http://www.cl.cam.ac.uk/Research/SRG/netos/netx/; details
about Measure andMtk are available from the Measure web
pages [21].

REFERENCES

[1] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A trans-
port protocol for real-time applications,” RFC1889, Jan. 1996.

[2] V. Jacobson and M. J. Karels, “Congestion avoidance and control,” in
Proc. SIGCOMM’88, Nov. 1988, pp. 314–329.

[3] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno,
and SACK TCP,”ACM Computer Commun. Rev., vol. 26, no. 3, pp.
5–21, July 1996.

[4] L. Brakmo and L. Peterson, “TCP Vegas: End to end congestion avoid-
ance on a global internet,”IEEE J. Select. Areas Commun., vol. 13, pp.
1465–1480, Oct. 1995.

MORTIER et al.: IMPLICIT ADMISSION CONTROL 2639

[5] K. K. Ramakrishnan and S. Floyd, “A proposal to add explicit conges-
tion notification (ECN) to IP,” RFC2481, Jan. 1999.

[6] P. Key, D. McAuley, P. Barham, and K. Laevens, “Congestion
pricing for congestion avoidance,” Microsoft Research, Tech. Rep.
MSR-TR-99-15, http://www.research.microsoft.com/research/net-
work/disgame.htm, Feb. 1999.

[7] R. Morris, “TCP behavior with many flows,” inProc. IEEE Int. Conf.
Network Protocols, Atlanta, GA, Oct. 1997.

[8] L. Massoulié and J. W. Roberts, “Arguments in favor of admission con-
trol for TCP flows,” inProc. ITC-16: Teletraffic Eng. Competitive World.

[9] A. Kumar, M. Hegde, S. V. R. Anand, B. N. Bindu, D. Thirumurthy,
and A. A. Kherani, “Nonintrusive TCP connection admission control
for bandwidth management of an Internet access link,”IEEE Commun.
Mag., May 2000.

[10] ATM Forum Technical Committee,User-Network Interface Signaling
Specification, July 1996.

[11] S. Jamin, S. J. Shenker, and P. B. Danzig, “Comparison of measure-
ment-based admission control algorithms for controlled-load service,”
in Proc. INFOCOM’97, Apr. 1997.

[12] , “Measurement-based admission control algorithms for con-
trolled-load service: A structural examination,” Univ. Michigan, Rep.
CSE-TR-333-97, Apr. 1997.

[13] J. Wroclawski, “The use of RSVP with IETF integrated services,”
RFC2210, Sept. 1997.

[14] K. K. Ramakrishnan, G. Hjalmtysson, and J. E. Van der Merwe, “The
role of signaling in quality of service enabled networks,”IEEE Trans.
Commun., vol. 37, pp. 124–132, June 1999.

[15] V. Paxson, “Measurements and analysis of end-to-end Internet
dynamics,” Ph.D. dissertation, Computer Science Division, Univ.
California Berkeley, Apr. 1997.

[16] M. Mathis, J. Semske, J. Mahdavi, and T. Ott, “The macroscopic be-
havior of the TCP congestion avoidance algorithm,”ACM Computer
Commun. Rev., vol. 27, no. 3, July 1997.

[17] T. Ott, J. Kemperman, and M. Mathis. (1996, Aug.) The stationary
behavior of ideal TCP congestion avoidance. [Online]ftp://ftp.bell-
core.com/pub/tjo/TCPwindow.ps

[18] F. P. Kelly, “Notes on effective bandwidths,” inStochastic Networks:
Theory and Applications, F. P. Kelly, S. Zachary, and I. Ziedins, Eds:
Oxford University Press, 1996, pp. 141–168.

[19] S. Crosby, I. Leslie, J. Lewis, R. Russell, M. Huggard, and B. McGurk,
“Predicting effective bandwidths of ATM and Ethernet traffic,” inProc.
13th UK Teletraffic Symp. Strathclyde Univ., Glasgow, Mar. 1996.

[20] S. Crosby, I. Leslie, J. Lewis, R. Russell, F. Toomey, and B. McGurk,
“Practical connection admission control for ATM networks based on
on-line measurements,” inProc. IEEE ATM’97, Lisbon, June 1997.

[21] (1999) Measure web pages. [Online]http://www.cl.cam.ac.uk/Re-
search/SRG/netos/old-projects/measure/

[22] (1999) The UCB/LBNL/VINT network simulator, version 2. [On-
line]http://www-mash.cs.berkeley.edu/ns/

[23] A. Kuznetsov. (1999) IP route tools v2. [Online]ftp://ftp.inr.ac.ru/ip-
routing/iproute2-current.tar.gz

[24] Chesapeake Computer Consultants, Inc. (1999) Test TCP. [On-
line]http://www.ccci.com/tools/ttcp/f1.html

[25] R. Russell et al.. (1999) Linux IP firewalling chains. [On-
line]http://www.rustcorp.com/linux/ipchains/

[26] S. Ostermann. (1999) tcptrace. [Online]http://jarok.cs.ohiou.edu/soft-
ware/tcptrace/tcptrace.html

[27] Internet Engineering Task Force, “Requirements for Internet
hosts—communication layers,” RFC1122, R. Braden, Ed., Oct.
1989.

[28] J. Lewis and R. Russell,An Introduction to Large Deviations for
Teletraffic Engineers. Dublin, Ireland: Dublin Institute for Advanced
Studies, Nov. 1997.

[29] P. Barham, S. Crosby, T. Granger, N. Stratford, M. Huggard, and F.
Toomey, “Measurement-based resource allocation for multimedia appli-
cations,” inProc. SPIE: Multimedia Computing Networking 1998: SPIE,
1998, vol. 3310.

Richard Mortier (S’99) received the B.A. degree in mathematics in 1996 and
the Diploma in computer science in 1997, both from Cambridge University.

He is currently studying for the Ph.D. degree in the area of network resource
allocation and control through pricing, with the Systems Research Group at
Cambridge University Computer Laboratory. He is interested in many areas of
systems, especially resource allocation and control in computer networks, op-
erating systems, and distributed systems.

Ian Pratt received the Ph.D. degree in computer science and was elected a
Fellow of King’s College, Cambridge, in 1996.

He is currently a member of faculty at the University of Cambridge Computer
Laboratory. As a member of the Lab’s Systems Research Group for over five
years, he has worked on number of influential projects, including the Fairisle
ATM LAN, the Desk Area Network Workstation, and the Nemesis operating
system. His research interests cover a broad range of Systems topics, including
computer architecture, networking, and operating system design.

Christopher Clark received the B.A. degree in computer science as a Founda-
tion Scholar of Queens’ College at the University of Cambridge in 1998.

His interest in systems has been pursued through research investigating appli-
cation of the Measure Project of the Systems Research Group at the Cambridge
University Computer Laboratory. He is currently designing advanced network
control systems for CPlane Inc., CA.

Simon Crosby(M’98) received the B.Sc. degree in math and computer science
from the University of Cape Town, South Africa, the Masters degree in computer
science from the University of Stellenbosch, South Africa, and the Ph.D. degree
in computer science from Cambridge University.

He is co-founder and CTO of CPlane Inc., a Los Altos, CA-based startup
developing a real-time service platform that delivers innovative communica-
tions-centric applications in multi-vendor, multitechnology networks. Before
founding CPlane, he was a Lecturer at the Cambridge University Computer
Laboratory, in the Systems Research Group. His research interests include net-
work optimization, network control and routing, and network performance. He
is chair of the Switch Control Working Group of the Multi-Service Switching
Forum, an international standardization forum for converged services networks.

